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Abstract

A platform matches a unit-mass of sellers, each owning a single product of heterogeneous

quality, to a unit-mass of buyers with differing valuations for unit-quality. After matching,

sellers make take-it-or-leave-it price-offers to buyers. Initially, valuations of buyers are only

known to them and the platform, but sellers make inferences from the matching algorithm.

The efficient matching is positive assortative, but buyer-optimal matchings are stochastically

negative assortative when there are few low-value buyers (i.e., compared to lower-quality

sellers, high-quality ones are matched to buyers with lower expected valuation). Although

everyone trades, generating rents for the side lacking bargaining power results in inefficient

matching.
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1 Introduction

Outcomes in two-sided markets are defined by (i) who transacts with whom and (ii) how the

surplus from each transaction is divided. In digital marketplaces, a matchmaker typically con-

trols (i), but not always (ii). Often, especially if transaction costs for agreeing the exchange are

significant, matched parties bargain bilaterally, with limited or no access to alternatives within

the platform. For example, Google search advertising exposes consumers to a subset of service

providers chosen from a vast pool.1 Similarly, Airbnb displays a curated subset of rental options

for popular destinations, while dating services limit the pool of potential matches for their users.

In this paper, we model the two-sided matching design problem of a platform that has su-

perior information about its users but does not control their bargaining. Our approach raises

the following issue: Since platforms can use user information to optimize matching, agents are

able to make inferences from the matching algorithm that may affect post-match bargaining. For

instance, Google, which can likely infer users wealth with great accuracy, may prominently dis-

play higher-quality opportunities to consumers with greater willingness to pay.2 As a result, it is

conceivable that sellers advertising on Google base their prices not just on their product quality

and prior-information about consumers, but also on the sample of buyers that they usually inter-

act with. When this feedback effect is present, platforms cannot treat the post-match bargaining

outcome of any pair as exogenous, which makes optimal matching design more complex.3

In our model, a platform matches buyers one-to-one with sellers, each owning a single good

of differentiated quality. A buyer’s willingness to pay is known to the platform but not to sellers.

The quality of a seller is publicly observed. After being matched, sellers make take-it-or-leave-

it price offers to buyers. The matching indirectly leaks information, either because it is public

or as a result of equilibrium reasoning, enabling sellers to tailor offers and price-discriminate.

The main insight we obtain follows from characterising both the welfare-optimal matching and

the buyer-optimal one. We find that a platform can use its control of the matching to garble

the information of sellers in a way that offsets their bargaining power and generates information

rents for buyers. However, this comes at the cost of creating sorting inefficiencies compared

to the first-best outcome. Sometimes these sorting inefficiencies are so large that even a fully-

random matching, which a platform implements if it does not use any information, generates

higher overall welfare despite resulting in missed transactions.

1Varian (2006) writes: “First, what does Google do? The answer, I claim is that Google is a yenta - a tradi-
tional Yiddish word for matchmaker. [ ... ] From an economics perspective, Google runs a two sided matching
mechanism.”

2Businesses bid for impressions based on information provided by Google and high-quality business likely bid
more for high-value consumers. A documented case is that of Orbitz, an online travel agent that showed to Mac
users more expensive hotels than those it showed to Windows users. See Dana Mattioli, ”On Orbitz, Mac Users
Steered to Pricier Hotels”, WSJ (2012).

3This differentiates us from most, if not all, of the literature on two-sided matching. Consider the paradigmatic
example of the National Residency Matching Program studied in Roth and Peranson (1999). Since salaries are set
in advance any information revealed by the platform on the preferences of both sides does not affect the outcome
post-match.
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Before we discuss our key assumptions, let us elaborate on our main result. The welfare-

optimal matching is positive assortative in value and quality. To see this, note two things. First,

any deterministic matching induces complete information and results in efficient trade for all

buyer-seller pairs, albeit sellers extract all the surplus from the transactions. Second, a deter-

ministic positive assortative matching maximises efficiency of sorting, as the total surplus gen-

erated by each match reflects a complementarity between value and quality. In contrast, the

buyer-optimal matching is distorted and, sometimes, (stochastically) negative assortative. That

is, the expected valuation of buyers matched to lower quality sellers is higher than that of buy-

ers matched to higher quality sellers. Intuitively, by concealing information about valuations

and thereby manipulating sellers’beliefs, such a random matching keeps prices lower and gen-

erates rents for buyers. A matching platform wishing to maximise buyer surplus therefore faces

a trade-off between the sorting efficiency of the matching and control of prices. This trade-off

often resolves in favour of heavily distorting the matching away from positive assortative. While

sorting inefficiencies are unavoidable, all matched agents trade despite post-match information

is asymmetric.4

By assuming that the matching is one-to-one we abstract away from the platform potentially

exploiting price-competition. We believe this is a good approximation, especially when firms

cannot commit to prices before the match and search costs are present. First, even if consumers

are exposed to multiple firms, the top-ranked enjoys substantial market power, as many con-

sumers may be reluctant to search. It is known that consumers are, ceteris paribus, heavily

biased toward most prominently located opportunities, such as the Buy-box placement in Ama-

zon or a top place in Google’s ranking (see Narayanan and Kalyanam (2015)), placements for

which firms are willing to pay higher prices. Second, suppose the platform could minimise such

prominence by creating a ranking of all firms and consumers could continue their search beyond

their first match at a small cost, as it is is sometimes the case. Search might still be limited in

equilibrium and the first firm could enjoy market power, as illustrated by Diamond (1971).5

Our focus on buyer-optimal matching has, primarily, a normative motivation. We present a

framework where some of the welfare trade-offs of regulating a “matching algorithm” to benefit

the side lacking bargaining power are exposed and can be evaluated. Nonetheless, there are sev-

eral plausible scenarios where maximization of buyer surplus is a good proxy for the incentives

of a two-sided platform. For example, two platforms might be in direct competition to attract

buyers who join the platform ex-ante, because sellers face switching costs or have already sunk

investments that lock them in one or the other. Also, a monopolist platform may be constrained

regarding its ability to charge one side, which may lead to maximisation of the ex-ante surplus

of the side that can be charged; or a platform might earn from advertising to one side only and

4As we illustrate in Section 7, the absence of trading inefficiencies results from the platform being fully informed.
Trading may not be always efficient if the platform cannot perfectly tell high value buyers from low-value ones.

5The one-to-one assumption would have a strong bite in a frictionless environment. In the limit case of Bertrand
competition, having just two firms competing post-match would bring the price down to cost, thus substantially
changing the problem of a buyer surplus-maximising platform.
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therefore attempt to maximize participation on that side.

The view that gatekeeping platforms, such as Google and Amazon, should be regulated is

popular. Concerns have been raised about what we may call match-discrimination, that is, the

practice of exploiting information on users to determine who they will be able to interact with.6

Then, our results can be read as expressing caution toward tampering with the algorithm in an

attempt to increase the surplus of the side with less bargaining power. Generating information

rent is expensive. Instead, regulators should explore alternative interventions that increase the

bargaining power of buyers post-match. Letting buyers make proposals to sellers is, indeed, an

existing business model in platform markets. Such policy has been popularized by Priceline,

an online travel agent, and since then has been widely adopted, quite possibly in an attempt to

increase buyers’ surplus (e.g., eBay now allows buyers to make offers to consenting sellers).

The key motivating assumption in our work is post-match bargaining. A direct implication

is that the platform is unable to condition the matching on prices. We claim this is a realistic

assumption in many cases of interest (e.g., Google search advertising). Nonetheless, in other

cases, such as for Airbnb or Amazon, matching of products to consumers takes place based on the

prices posted by sellers. We therefore consider a variant of the model where the platform chooses

a matching after sellers have posted their prices. Our main conclusion is that sorting distortions

are a direct consequence of the attempt of the platform to mitigate post-match bargaining power.7

In fact, when the platform can condition the matching on prices, then there is no trade-off between

buyer surplus and sorting inefficiencies. Independently of which side’s surplus the platform

is maximizing, the equilibrium outcome is positive assortative matching of buyers to sellers.

Moreover, trade is efficient for every matched pair. Nonetheless, whether buyers benefit from

firms committing to prices beforehand remains ambiguous. One the one hand, sellers lose their

market power against matched buyers compared to our benchmark model. On the other hand,

the platform loses the ability to directly persuade sellers to post lower prices.

We now proceed with presenting the model (Section 2) and our results (Section 3). Formal

proofs for Section 3 are in the Appendix. In Section 4 we relax the assumption of post-match

bargaining. In Section 5 we extend some of our observation to the case where the buyers can have

more than two values. We outline the related literature in Section 6. The model also assumes that

the platform is fully informed, sellers are only vertically differentiated and qualities are known.

The concluding section argues that our main insight is robust to relaxing these assumptions.

6The previous chair of the US FTC has expressed this opinion in her landmark paper on Amazon, Khan (2016).
In Europe, the Digital Markets Act imposes specific rules of behavior on systemically important platforms, deemed
“gatekeepers”. Among such rules is one that forbids platforms from distorting their algorithms in favor of own
products, a practice called “self-preferencing”.

7Post-match bargaining also renders cross-subsidization ineffective. Suppose the platform charges one strong
side and subsidise the weak. Post-match, the subsidised side will be held-up by the side with bargaining power.
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2 The Model

There is a unit mass of buyers. Each buyer has either a low value, l (> 0), or a high value, h(> l).

The fraction of buyers with a high value is denoted by µ . We initially assume there is also a unit

mass of sellers as this has no impact on the results of the next section. Each seller has a single

good to sell. The quality of a seller’s product is q and distributed according to the atomless CDF

F with support equal to [q,q], with q > q > 0. If a buyer with value v(∈ {l,h}) purchases the

good from a seller with quality q at price t, the buyer’s payoff is vq−t and the seller’s payoff is t.8

The buyers and sellers are matched one-to-one by a platform. We assume that the platform and

the buyer know the buyer’s valuation but the seller does not. We assume that sellers’ qualities are

publicly observed. Once a buyer and a seller are matched, the seller makes a take-it-or-leave-it

price-offer to the buyer. If the buyer accepts the seller’s offer, they trade at the price set by the

seller. Otherwise, both get their reservation payoff of zero.

Matching.— We describe a matching using the probabilities that each seller of quality q is

matched with a buyer of valuations h or l. That is, a matching is given by a measurable mapping

p = (ph, pl) such that ph, pl :
[
q,q

]
→ [0,1], where ph (q) and pl (q) denote the probabilities

that a q-seller is matched with a buyer with valuations h and l, respectively. A feasible matching

p must satisfy the following constraints:

ph (q)+ pl (q) ≤ 1,∫ q

q
ph (q)dF (q) ≤ µ,∫ q

q
pl (q)dF (q) ≤ 1−µ.

The first constraint guarantees that the probability that a seller with type q is matched with a buyer

is weakly less than one. We do not require that each buyer and seller is matched with probability

one. The second and third constraints guarantee the measure of high-value (low-value) buyers

who are matched with sellers does not exceed the total measure of high-value (low-value) buyers.

We say that a matching p is positive assortative if ph(q) = 1 for q ≥ F−1(1−µ), ph(q) = 0

elsewhere and pl(q)= 1− ph(q), where F−1 stands for the inverse of F . The matching is stochas-

tically negative assortative whenever ph is monotonically non-increasing in quality. Conversely,

the matching is stochastically positive assortative when ph is monotonically non-decreasing. A

matching is fully-random if and only if ph(q) = µ and pl(q) = 1−µ for all q ∈
[
q,q

]
.

Optimal Prices.— The matching is observed by sellers. Then, if the matching is given by

p = (ph, pl), the posterior probability of a seller with quality q being matched to a high-value

buyer is µ p (q) = ph (q)/(ph (q)+ pl (q)). Note that µ p = ph if all sellers are matched with

8The characterization of the welfare-optimal and buyer-optimal matching and the welfare analysis can be ex-
tended with little modification to a general u(q,v) assuming u is increasing in both arguments and log-supermodular.
We have retained a simpler functional form to avoid burdening the reader with further notation.
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probability one. Clearly, the q-quality seller either sets price ql, which gives profit ql, or price

qh, which gives an expected profit of µ p(q)qh. It follows that she will set price ql if, and only

if, µ p (q)≤ l/h and price qh otherwise. In looking for an optimal matching, it is without loss to

focus on equilibria where sellers charge the lowest price when indifferent.

Buyer Surplus.— Let χ p(q) ∈ [0,1] denote the probability that a seller with quality q charges

price lq following matching p. That is

χ
p (q) =

{
1 if µ p (q)≤ l/h,

0 if µ p (q)> l/h.

Then, for a given matching p, the buyers’ surplus is

∫ q

q
χ

p (q) ph (q)q(h− l)dF (q) .

3 Optimal Matching

The end goal of this section is to characterize the matching which maximizes buyers’surplus and

to study its welfare properties. The primary benchmark against which the buyer-optimal match-

ing will be evaluated is the matching that maximizes welfare, defined as the sum of expected

buyer surplus and seller-profit. We therefore start with the following result.

Proposition 1. A matching maximizes total welfare if and only if it is a positive assortative

matching (PAM) almost-everywhere. In the PAM buyers obtain zero surplus.

The proof of Proposition 1 relies on two observations. First, for any matching p that induces

complete-information, that is µ p(q)∈{0,1}, trade will take place with probability one and sellers

will obtain all surplus. Second, PAM induces complete information and the total welfare of a

match between a seller with quality q and a buyer with value v is given by the supermodular

function qv. In other words, because every matched pair trades and sorting of buyers to sellers

is the best possible, PAM achieves the maximum feasible level of surplus. It is an immediate

consequence of Proposition 1 that PAM also maximizes profits of sellers.

Having established that a matching results in either zero surplus for buyers or inefficiencies,

we now fully characterize the buyer-optimal matching and equilibrium pricing, showing that

such inefficiencies can be sizable. We focus on buyer-optimal matchings in the Pareto frontier,

that is, such that there is no other matching that, in equilibrium, gives higher seller-profit without

reducing buyer surplus below its maximum level. This has one main implication: no buyer or

seller remains unmatched, even if additional matches do not increase buyer surplus.
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Figure 1: Sketch of Efficient Buyer-Optimal matching, p∗h.
The red-dotted area has measure µ and the gray-dotted area has measure 1−µ .

Theorem 1. Let p∗ = (p∗h, p∗l ) be a matching defined as follows:

p∗h (q) =


l/h if q ≥ q∗

0 if q ≤ q∗and µ ≤ l/h

1 if q ≤ q∗and µ ≥ l/h

,

p∗l (q) = 1− p∗h(q),

where q∗ =

F−1
(

l−µh
l

)
if µ ≤ l/h,

F−1
(

µh−l
h−l

)
if µ ≥ l/h.

Any buyer-optimal matching in the Pareto frontier is equal to p∗ almost everywhere.

The buyer-optimal matching (henceforth also BOM) of high-value buyers, p∗h, is exemplified

in the two panels of Figure 1. Observe that, when µ ≥ l/h the matching is stochastically negative

assortative. Instead, when µ < l/h then the matching is stochastically positive assortative.

Let us explain the arguments leading to this theorem. Recall that a q-seller sets price qh if the

probability of being matched with a high-value buyer exceeds l/h and sets price ql otherwise.

So, a buyer’s payoff is positive only if his valuation is high and the seller sets the lower of these

prices. The surplus of a high-value buyer who purchases a q-quality good at price ql is q(h− l).
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Therefore, in order for a seller to generate positive consumer surplus, she must be matched with

a mixture of high- and low-value buyers.

Furthermore, consumer surplus is maximized for any given seller if she is matched with as

many high-value buyers as possible as long as she is willing to set the lower price. That is, she

is indifferent between the two prices, so the fraction of high-value buyers among her matches is

exactly l/h. Since the high-value buyers’ surplus, q(h− l), is increasing in q, the BOM generates

consumer surplus at high quality sellers. Above a quality threshold, q∗, q-sellers are matched so

that they are indifferent between the two prices, so p∗h (q) = 1− p∗l (q) = l/h.

Of course, to maximize buyer surplus, the threshold q∗ should be as low as possible and it is

determined by the initial distribution of the buyers, µ . If low-value buyers are abundant, µ ≤ l/h,

then q∗ is defined so that the mass of high-value buyers who are matched with sellers with quality

above q∗ is exactly µ . In this case, sellers with quality below q∗ are matched with the remaining

low-value buyers. If there are few low-value buyers, µ ≥ l/h, then q∗ is defined so that the mass

of low-value buyers who are matched with sellers with quality above q∗ is exactly 1− µ . In

this case, sellers below q∗ are matched with the remaining high-quality buyers. The matching is

stochastically negative assortative.9

Let’s now define sorting distortions in any given matching (ph, pl) as the difference between

the total welfare generated by PAM and the welfare generated by that specific matching, assum-

ing all transactions occur.10 In other words, sorting distortions measure the inefficiencies that

cannot be directly attributed to informational frictions. Theorem 1 implies that the sorting dis-

tortions resulting from maximizing buyer surplus can be greater than those arising from a fully

random matching (henceforth FRM), which would be implemented by a platform that does not

use any information on buyers and sellers. Visually, when µ > l/h, BOM generates a decreasing

ph, while PAM induces an increasing one and FRM a constant one.

We make a few additional observations on the nature of the optimal matching. First, the

profit obtained by sellers in the BOM is not necessarily monotone in their quality. Low-quality

sellers may end up with more profit than high-quality ones when BOM is stochastically negative

assortative. Second, even if the BOM is stochastically negative assortative in value and quality,

the average surplus of buyers matched to high quality sellers is larger than that of buyers matched

to lower-quality ones. Third, when low-value buyers are rare, that is µ > l/h, the platform

could also benefit buyers by re-balancing participation of high and low values in a somewhat

counterintuitive way, that is by raising the share of low-value buyers.11

9An alternative buyer-optimal matching not in the Pareto frontier would leave high-valuation buyers unmatched.
In this case, matching would not be negative assortative. Hence, readers may wonder whether negative assortative-
ness is an essential property of buyer-optimal matchings. In Section 5, Example 1, we consider the case of buyers
with three possible valuations and show that any buyer-optimal matching is necessarily negative assortative.

10Formally, the sorting distortion induced by matching (ph, pl) is µhE[q | q > F−1(1− µ)]+ (1− µ)lE[q | q ≤
F−1(1−µ)]−

∫ q
q q(ph(q)h+ pl(q)l)dF(q).

11The phenomenon that the marginal value of having additional types of buyers is not only equal to the surplus
they generate from trading, which is zero for low-value buyers, is studied in depth in Galperti et al. (2024).
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Welfare analysis.— We conclude this section by comparing BOM’s payoffs with those arising

under two benchmarks, the PAM and the fully random matching.

It follows from Proposition 1 that PAM generates higher welfare and higher profit than BOM.

It is a consequence of Theorem 1 that BOM generates strictly larger buyer surplus than PAM and

FRM. It is also immediate to see that buyer surplus is strictly larger in the FRM than in PAM, as

long as µ ≤ l/h (i.e., all sellers set the lower price when they have no additional information on

buyers), but is equal to zero as in PAM when µ > l/h. Regarding the comparison between BOM

and FRM, we have the following proposition.

Proposition 2. If µ ≤ l/h, then FRM generates the same profit as BOM and, hence, lower

welfare. If µ > l/h then FRM generates higher-profit than BOM but the welfare ranking between

the two matchings is, in general, ambiguous. In particular, if l
h < µ < l

h +
h−l

h
l
h , then the welfare

of BOM is larger than that of FRM. However, for any given µ > 0, if l
h is sufficiently small, the

welfare of FRM exceeds that of BOM.

A significant consequence of this proposition is that a stochastically negative assortative

BOM generates, in some cases, not only larger sorting distortions, but also lower welfare than

if the platform ignored information altogether. This observation is not obvious because there is

an efficiency trade-off between lost sales arising from too high prices in FRM against the sort-

ing distortions introduced by PAM. Moreover, since a platform without information on at least

one of the two sides implements a FRM, these findings suggest that the overall welfare effect of

the platform collecting more information about users may depend on the platform’s objective.

As we discuss further in the concluding section, more information always reduces bargaining

disagreement but may bring about a larger sorting distortion.

Let’s now conclude this section by discussing the intuition behind the proof Proposition 2.

When µ ≤ l/h, the profit of BOM and FRM are the same, as in both cases each seller sets price

ql and trade takes place. Hence, the first part of the proposition follows because BOM generates

higher buyer surplus by Theorem 1. For the case where µ > l/h, Proposition 2 formalises the

following two observations about overall welfare. First, when µ is close to l/h, the loss from

not selling to low-value buyers remains positive while the distortion loss arising from BOM goes

to zero since lim
µ→l/h

p∗h(q) = lim
µ→l/h

p∗h(q) = l/h. Second, if l/h → 0, the loss from not selling to

low-value buyers in FRM becomes negligible while BOM tends to a fully negative assortative

matching given that lim
l/h→0

q∗ = F−1(µ). Turning to profit, observe that when µ > l/h charging h

is optimal for all sellers both in FRM and in BOM because of the indifference condition. Hence,

higher profit is attained in FRM rather than in BOM, because the value of lost sales to low-value

buyers is larger under BOM with h being charged than in FRM, given the negative assortative

nature of BOM.
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4 Matching on Prices

Because bargaining is post-match, the platform is unable to condition the matches on prices. In

this section, we consider a variant of the model where firms post (observable) prices before the

platform implements its matching. Our main conclusion is that, in this case, there is no trade-off

between buyer surplus and efficient sorting. The outcome is PAM and trading always takes place.

Once the platform is unable to steer pricing, it loses its need to distort the matching.

There are two natural avenues to modify the model, adding the platform as an explicit player.

First, we could allow the platform to commit to a price-dependent matching before prices are

posted. This option trivializes the problem. The platform can implement PAM and any pricing

that gives sellers more than their outside option. It does so by threatening sellers with the prospect

of remaining unmatched. Second, we could assume that sellers post prices before the matching

algorithm is chosen. In the remainder of the section we study this variant, which may also appear

more realistic in light of the flexibility that platforms have in updating their algorithms.

In this modified game, first, sellers simultaneously post prices. Then, after observing prices,

the platform chooses a matching p and, finally, the buyers decide whether to buy or not. We fo-

cus only on perfect equilibria which are limits of equilibria in a finite model12. The competition

among sellers may intensify if there are more sellers than buyers because sellers are willing to

lower their prices in order to guarantee that they are matched. Therefore, we generalise the previ-

ous environment by assuming that the measure of sellers is larger than the measure of buyers. We

assume that F is a strictly increasing function with F(q) = k ≥ 1. We denote with τ : [q,q]→R+

the pure strategy of sellers. Regarding the platform’s objective, we continue to consider three

scenarios: it maximizes either buyer surplus, profits, or welfare.

Proposition 3. The matching is PAM irrespective of the platform’s objectives.

We point out that when there are more sellers than buyers, the definition of PAM does not

only require that higher quality sellers are matched with higher willingness-to-pay buyers, but

also that only the lowest quality sellers remain unmatched.

We provide an intuitive argument for the proof, which is relegated to the Appendix. Let τ (q)

denote the posted price of a q-seller. First, we argue that only the worst sellers are unmatched in

every equilibrium. If there were two sellers, q1 and q2, q1 < q2, such that the q1-seller is matched

but the q2-seller is not, the q2-seller could deviate and post a slightly higher price than that posted

by the q1-seller. Since this seller generates more surplus than the q1-seller, the platform strictly

prefers to match the q2-seller, irrespective of its objective, so the deviation is profitable.

It remains to show that higher quality sellers are matched with h-buyers. Suppose, by con-

tradiction, that q1 < q2 and that the q1-seller sells to an h-buyer and the q2-seller sells to an

12This is motivated by the fact that, since there are continuum many sellers and buyers, even when the platform
cannot commit to a matching mechanism, it can punish individual deviations at no cost. This gives rise to multiple
equilibria, some of which do not capture the platform’s commitment problem.
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l-buyer. We next show τ (q1) > lq1. If the platform maximizes profits, the q1-seller can always

set a price of hq1(> lq1) without changing the platform’s desire to match him with an h-buyer.

If the platform maximizes welfare or buyer surplus and τ (q1) ≤ lq1, then it could strictly in-

crease its payoff by matching the q1-seller with an l-buyer and the q2-seller with an h-buyer.

Finally, we demonstrate that the q2-seller could profitably deviate by setting a price slightly

above max{τ (q1) , lq2}. Since an l-buyer would not trade at this price, such a deviation essen-

tially commits the seller to not generate surplus unless she is matched with an h-buyer. However,

since an h-buyer was willing to trade with the q1 seller at τ (q1), he would also be willing to trade

with the q2-seller at the new price. In fact, since q2 > q1 and τ (q1) > lq1, the h-buyer’s payoff

generated by the deviating q2-seller is strictly larger than that generated by the q1-seller. In addi-

tion, the profit of the deviating q2-seller would also be larger than that of the q1-seller because the

deviating price exceeds τ (q1). Consequently, irrespective of the objective, the platform strictly

prefers matching an h-buyer with the q2-seller to matching him with the q1-seller irrespective of

its objectives. Consequently, any equilibrium matching must be PAM.13

The seller-optimal matching, when the platform can condition on prices, aligns with the

seller-optimal outcome in our benchmark model. Specifically, a q-seller matched with an l-buyer

(or an h-buyer) sells at a price of ql (or qh, respectively). However, the buyer-optimal matching

differs between the two versions of the model. The price set by a seller matched with an l-buyer

is determined by the requirement that she must generate the same buyer surplus as the highest-

quality unmatched seller would if they set a price of zero and were matched with an l-buyer.

Similarly, the equilibrium price paid by an h-buyer is established to ensure his surplus matches

what he would receive if he were matched with the highest-quality seller who is paired with an

l-buyer. As competition among sellers intensifies—i.e., as k increases—prices decline.

Despite the sorting distortions of BOM in the benchmark model, whether buyers prefer one

platform type to the other is not a priori obvious. On the one hand, if sellers post prices before

being matched, they lose bargaining power and their prices are lower. On the other hand, if

the platform moves after prices are posted, it loses ability to persuade sellers and control their

prices. In fact, the next example shows that the comparison of the two models from the buyers’

perspective is, in general, ambiguous.

Example 1. Let’s assume there are as many sellers as buyers, quality is uniformly distributed

in [0,q] and the platform maximises buyer surplus. That is F(q) = q
q . Noting that low-value

buyers obtain zero surplus, using payment schedule (7) from the proof of Proposition 3 we can

compute buyers surplus in the PAM where the platform conditions on prices as

µ(h− l)F−1(1−µ) = µ(h− l)(1−µ)q (1)

13This argument is incomplete because one must also show that after the deviation of the q2-seller, the platform
cannot find an optimal matching in which neither the q1-seller nor the q2-seller is matched. We provide a proof in
the appendix where we construct the unique equilibrium for each of the objectives of the platform.
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and buyer surplus in the BOM of the benchmark model asµ(h− l)E
[
q | q ≥ F−1 (1−µ

h
l

)]
= µ(h− l)

(
q
2 +

q
2

(
1−µ

h
l

))
if µ < l/h

(1−µ)lE
[
q | q ≥ F−1

(
1− (1−µ)h

h−l

)]
= l(1−µ)

(
q
2 +

q
2

(
1− (1−µ)h

h−l

))
if µ > l/h.

(2)

To establish our conclusion that a comparison of the two models in terms of buyer surplus

is ambiguous it is sufficient to compare (1) and (2) when µ < l/h. After factoring out µ(h− l)

from both formulas, we can see that buyer surplus from BOM in the benchmark model is lower

than buyer surplus in the PAM arising from the variant model if

q
2
+

q
2

(
1−µ

h
l

)
< (1−µ)(q).

That is, if
q
(

1−µ
h
2l

)
< (1−µ)q or (µ ≤) l/h < 1/2.

5 Multiple Buyer Values

In this section we present a partial characterisation of Pareto efficient matchings under the as-

sumption that there are a finite number of possible buyers values drawn from the naturally ordered

set V = {v1,v2, ...,vK}. We continue to assume that quality is distributed according to F .

Our key finding is the following. Any Pareto efficient matching outcome can be constructed

using a segmentation of the buyer market that is extremal, in the sense of Bergemann et al. (2015)

(BBM). More precisely, assuming the designer maximises some weighted average of buyer and

seller surplus, an optimal matching is built by ordering segments of an extremal segmentation

in terms of the average (weighted) surplus they generate for unit-quality and then positively

assortatively matching them to groups of sellers. Buyers in each segment are matched to sellers

so that all sellers matched to a certain segment believe they are facing a random buyer from

that segment. Trade always takes place because sellers tailor the price to the lowest value in the

support of the segment to which they are matched. As in the two-value case, any inefficiency is

due to sorting.

We make three additional observations regarding optimal matching that confirm the insights

obtained in the two-value case. First, PAM maximises welfare and sellers’ profits. The relevant

extremal segmentation will be one where each segment contains all and only buyers with the

same value. Second, in the extremal segmentation that maximises buyer surplus, there is at most

a single segment for which buyers have only one possible value. If two such segments existed,

buyer surplus could be raised by merging them. This implies that sorting will be, in general,

inefficient. Third, the buyer optimal matching can still be stochastically negative assortative.

As a first step we need to introduce some notation, which we borrow from Bergemann et al.

(2015) (BBM). We define a market on the buyer-side as a distribution on V and we denote the
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set of all markets as X = ∆(V ). For each x ∈ X let x(v) be the probability of v ∈ V . We denote

the market defined by the prior distribution with full support on V as x∗ ∈ X . A segmentation σ

of x∗ is a subdivision of buyers in x∗ into various submarkets, called segments of σ . Formally,

σ is a distribution on X such that the aggregate market, that is the mixture distribution, is equal

to x∗. If σ has finite support, we let σ(x) be the probability of market x ∈ supp σ . Finally,

we say that a segmentation σ is extremal if, for each x ∈ supp σ , a monopolist selling to it

is indifferent between setting any price equal to the valuations in the support of the segment.

Denote an extremal market with support E ⊆V as xE .

We now introduce some additional pieces of notation that are needed for our purposes. First,

we define a matching as the assignment of a market x ∈ X to each quality level q. Denoting

xq the market assigned to any seller with quality q, a Pareto efficient matching must satisfy the

feasibility condition ∫
xq(v) dF(q) = x∗(v) for all v ∈V. (3)

Next, we introduce the platform’s objective. We will be interested in matchings that maxi-

mize a weighted average of buyer surplus and seller-profit. That is, for λ ∈ [0,1] our objective

function is

λ

∫
q cs(xq)dF(q)+(1−λ )

∫
q π(xq)dF(q) =

∫
q
[
λcs(xq)+(1−λ )π(xq)

]
dF(q),

where cs(x) and π(x) denote the consumer surplus and the monopoly profit in a standard monopoly

market x ∈ X with unit quality, respectively. Writing uλ (x) = λcs(x)+(1−λ )π(x), the platform

problem we aim to solve is

max
xq satisfies(3)

∫
uλ (xq)qdF(q). (PP-λ )

A matching will be Pareto-efficient if and only if it solves (PP-λ ) for some λ ∈ [0,1].

We can think of a matching as a segmentation of x∗ made up of a continuum of segments.

Conversely, to solve (PP-λ ) it will be useful to construct a matching from a generic segmentation

of the buyer market with finite support. To this end, we will say that a segment x ∈ supp σ

is matched uniformly at random with a certain mass σ(x) of sellers if for each of those sellers

xq = x. Hence, each of those sellers has posterior equal to x(v) for any v ∈ supp x.

Which segments are matched with which seller is crucial for our purposes. For any segmen-

tation σ with finite support, let’s order the segments in its support as {xσ
1 ,x

σ
2 , . . . ,x

σ
n }, with the

property that uλ (xσ
1 ) ≥ uλ (xσ

1 ) ≥ ·· · ≥ uλ (xσ
n ). We then introduce the following key definition.

A matching is a uλ -assortative matching based on a segmentation σ (with finite support) if it

is built by pairing sellers in (F−1(1−σ(xσ
1 )),q] to consumers in xσ

1 uniformly at random, then

pairing sellers in (F−1(1−σ(xσ
1 )−σ(xσ

2 )),F
−1(1−σ(xσ

1 ))] to consumers in xσ
2 , and so on until

all buyers and sellers are exhausted.

Our main observation in this environment is the following.
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Proposition 4. There is solution to (PP-λ ) which is an uλ -assortative matching based on an

extremal segmentation of x∗.

The proposition above indicates that the problem of finding an optimal matching can be

simplified by restricting attention to the finite set of all extremal segmentations of the buyers

market, further characterized in BBM. The proof follows from two observations. First, for any

market x ∈ X there exists an extremal segmentation that has the same distribution over valuations

and where the price charged for all segments of such extremal segmentation is the same as that

charged in x (Proposition 2 in BBM). Second, in maximizing (PP−λ ) we must have that q′ > q′′

implies uλ (xq′)≥ uλ (xq′′). If not, then we could swap segments without affecting the feasibility

condition and without lowering the objective function.

A consequence of the proposition is that, as for the case of two values, in a (Pareto-efficient)

optimal matching (in the sense made clear in the statement of the proposition) every matched

couple will trade. There will be no inefficiency due to private information, despite information

not being symmetric at the bargaining stage. This is because sellers set the lowest possible price,

which is equal to quality times the lowest value in the support of the (extremal) segment they are

matched with.

It is a simple corollary of the previous proposition that PAM, defined now as u0-assortative

matching based on the perfect price discrimination segmentation of x∗, maximizes producer sur-

plus and achieves a first-best. Formally, a perfect-price discrimination segmentation of x∗ is the

σ composed by K extremal segments x{vi} with σ(x{vi}) = x∗(vi) for all i = 1, . . . ,K.

Corollary 1. PP−0 is solved by PAM.

Our final result further characterises the matching and the extremal segmentation arising in

the maximisation of buyer surplus. It suggests that the BOM will continue to be coarse, hence

inefficient compared to PAM, even with multiple valuations. It extends our main qualitative

insight from the previous sections to the case where buyers have multiple valuations.

Corollary 2. PP-1 is solved by a u1-assortative extremal segmentations of x∗ which contains at

most one extremal segment that has a single valuation in its support.

The corollary restates that a buyer-optimal matchings can be constructed from some extremal

segmentation (but, as we shall see, not necessarily one that maximises consumer surplus in BBM)

by ordering the segments in terms of consumer surplus. It also states that it is not possible that

the segmentation contains two segments that both have a single value in their support.

We conclude this Section with two examples. First, we present an example where the

consumer-surplus-maximizing-segmentation of BBM can be used to construct a buyer-optimal

matching that result in stochastically negative assortative matching. Second, we show that, in

some cases, the optimal extremal segmentation of the buyer-market used in the BOM is not an

efficient one that maximises consumer surplus in BBM. The example also demonstrates that the

14



problem of fully characterising a buyer-optimal matching is not trivial. The idea underlying the

example is that when only a small fraction of sellers is able to generate value, the platform max-

imising buyer surplus may want to focus on segmentations that, albeit resulting in higher profit

and therefore lower total consumer surplus, produces higher consumer surplus for some small

fraction of buyers who are matched with the few high-quality sellers.

Example 2. Let buyers have three valuations, (l,m,h), with l = 1, m = 2 and h = 3, The prior

x∗ is such that the low and medium value have both probability 1
5 . The unit-quality monopoly

price is 3. We assume the distribution of quality is such that the quality is either high, q = 1, with

probability 2/5, medium, q = 1/2, with probability 2/5, or low, with q = 0 for simplicity.

The BBM consumer-surplus-maximising extremal segmentation (see Figure 2) is composed

by a segment of mass 2/5 with support {l,m,h}, that is x{l,m,h}, a segment of mass 2/5 with sup-

port {m,h}, that is x{m,h}, and a segment of mass 1/5 only containing buyers with low valuation.

As shown later, in the BOM all buyers in x{l,m,h} are matched to high quality sellers, buyers in

x{m,h} are matched to medium quality sellers and the remaining buyers to low-quality sellers.

Segment x(1) x(2) x(3) σ(x)

x{1,2,3} 1
2

1
6

1
3

2
5

x{2,3} 0 1
3

2
3

2
5

x{3} 0 0 1 1
5

x∗ 1
5

1
5

3
5 1

Figure 2: Segmentation of the buyer market into the buyer-optimal
matching of Example 2.

The average buyer value in x{l,m,h} is 1
21+ 1

62+ 1
23 = 11/6 while it is 1

32+ 2
33 = 16/6 in

x{m,h} and 3 in x{h}. Hence the buyer-optimal matching above is not stochastically negative

assortative, nor it is positive assortative even if agents in xh are left unmatched.

To verify the above segmentation is optimal we use the characterisation of Proposition to

restrict attention to extremal segmentations. Then note cs(x{l,m,h})= 11
6 −1= 5/6> cs(x{m,h})=

16
6 −2= cs(x{l,h})= 2

31+ 1
33−1= 2/3> cs(x{l,m})= 1

21+ 1
22−1= 1/2> cs(x{l})= cs(x{m})=

cs(x{h}) = 0. To conclude, observe that our candidate BOM matches all high quality sellers to the

segment with the highest possible surplus, x{l,m,h}, and matches all remaining sellers with non-

zero quality to a segment of consumers with the highest surplus among the remaining segments,

given the segment x{l,m,h} can have at most mass 2/5 by as in the BBM segmentation.14

14The segment x{l,m,h} uses one half l-buyers per unit mass and only x∗(l) = 1/5 such buyers are available. Hence,
at most 0.2/0.5 = 0.4 = 2/5 probability can be assigned to it; the BBM segmentation attains this bound.
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Example 3. Suppose the three possible valuations of buyers, (l,m,h), with l = 1
5 , m = 1

2 and

h = 1. The prior x∗ is such that the medium and high value have both probability 1
4 . Note that a

unit-quality monopoly profit is 1/4 and the monopolist is indifferent between charging m and h.

We assume the distribution of quality is such that the quality is either high, q= 1, with probability

2/5, or otherwise low, where we set q = 0 for simplicity.

The consumer-surplus-maximising extremal segmentation according to BBM is composed

by a segment of mass 5/6 with support {l,m,h}, that is x{l,m,h}, and a segment of mass 1/6 with

support {m,h}, that is x{m,h}. See Figure 3 for details.

Segment x(1
5) x(1

2) x(1) σ(x)

x{
1
5 ,

1
2 ,1} 3

5
1
5

1
5

5
6

x{
1
2 ,1} 0 1

2
1
2

1
6

x∗ 1
2

1
4

1
4 1

Figure 3: BBM segmentation of the buyer market in Example 3.

Now suppose we were to build a u1-assortative matching based on it. Observe that cs(x{m,h})=
1
4 > 11

50 = cs(x{l,m,h}).15 We would match the full segment x{m,h} with high-quality sellers, while

the remaining sellers will be matched to buyers in segment x{l,m,h}. In particular, mass 7
30 of high

quality will be matched to buyers in x{l,m,h}. We conclude that the buyer surplus generated by

the matching built using the BBM segmentation, is (1
6)
(1

4

)
+
( 7

30

)(11
50

)
= 93/1000.

Next, we show that there is an extremal segmentation of the buyer-market that generates

higher unit-quality monopoly profit than 10/40 but allows a matching with higher buyer surplus.

The idea is to maximise the size of the segment producing the highest consumer surplus among

all extremal segments, in this case x{m,h}. Indeed, the buyer-optimal matching in this example

requires the creation of an extremal segmentation with a segment with support {h,m} of mass 1
2

and a segment with support {l} of mass 1
2 (see Figure 4). When the segment x{m,h} is matched

uniformly at random to the high-quality sellers the buyer surplus is (1
4)(

2
5) = 1/10, which is

larger than 93/1000. Crucially, note that this segmentation generates a profit to a unit-quality

monopolist equal to 14/40 > 1/4.

15cs(x{m,h}) = ( 1
2 )(

1
2 )+( 1

2 )(1)−
1
2 = 1

4 while cs(x{l,m,h}) = ( 3
5 )(

1
5 )+( 1

5 )(
1
2 )+( 1

5 )(1)−
1
5 = 11

50 .

16



Segment x(1
5) x(1

2) x(1) σ(x)

x{
1
2 ,1} 0 1

2
1
2

1
2

x{
1
5} 1 0 0 1

2

x∗ 1
2

1
4

1
4 1

Figure 4: Segmentation of the buyer market into the buyer-optimal
matching of Example 3.

6 Literature Review

Starting with Shapley and Shubik (1971), an important strand of the literature on two-sided mar-

kets has imposed joint restrictions on who matches with whom and at what prices by requiring

that no coalition of agents benefits from a different matching and sharing of output that they can

implement. We depart from tradition by considering an environment where, due to the infor-

mational spillovers and bargaining under asymmetric information, the ex-post surplus-sharing of

a matched couple is not exogenous, but depends on the matching. Notable exceptions, within

the smaller literature that considers stability of matching under asymmetric information, are Liu

et al. (2014) and Liu (2020). There, in order to evaluate potential deviations, agents form interim

expectations on the value of their match which, as in our paper, depend on the putative mapping

from states of the world into matchings, which is publicly known.

The design of an optimal matching, but by a revenue maximizing platform, is studied in

Damiano and Li (2007), Johnson (2013), Gomes and Pavan (2016), Aoyagi and Yoo (2022) and

Gomes and Pavan (2024). We share with these works the presence of a monopolistic platform

that matches two-sides of the market and the emphasis placed on the distortion introduced by a

matching that maximises an objective other than total welfare. In stark contrast to our model, the

platform in these papers is uninformed about valuations and aims at maximizing its own profit by

setting prices to agents on both sides. The approach is in the spirit of optimal mechanism design,

where the outcome is now given by the matching rather than by the allocation of an object as in

classic Myersonian mechanism design. These papers are complementary to ours. Aoyagi and

Yoo (2022) is the closest in spirit. There, bargaining is post-match and the sorting distortions, as

in our paper, result from an attempt to manipulate information rents. All the other works look at

platforms that dictate the conditions at which trading takes places among matched pairs.

A number of other papers have looked at the incentives of platforms who charge per-click to

distort matching in order to boost costly search (i.e., clicking). In Eliaz and Spiegler (2011) a

consumer searches from a pool of firms whose boundary is determined by the platform. Ineffi-
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ciently too many low-quality sellers may be allowed in the pool, to induce consumers to search

more. In De Corniere (2016) a platform can match consumers to their preferred segment of firms

in a more or less noisy way. Consumers search within the set of firms they are matched with.

Because perfect matching traps consumers into monopoly prices, a platform may want to bias

the algorithm to foster consumer participation. In a similar vein, in Hagiu and Jullien (2011)

an intermediary may match consumers with stores that are worse for them in order to persuade

them to search more. They also show that the intermediary gains from marginally biasing the

matching away from the perfect one, if it reduce firms’ prices and convinces more consumers to

visit at least one store. While focusing strictly on the incentives of the platform, these papers sug-

gest reasons why perfect matching may not be consumer-optimal, with De Corniere (2016) and

Hagiu and Jullien (2011) also identifying a feedback effect of matching on prices. In our work,

we abstract from the platform’s incentives, horizontal differentiation and competition. The addi-

tional simplicity allows us to fully characterise the buyer-optimal matching, thus highlighting a

trade-off between matching efficiency and consumers’information rent.

In our model, if a pair is formed its participants won’t be available to form other matches.

Hence, the platform encounters a trade-off when forming a match. We refer to Elliott et al.

(2023b), Bergemann et al. (2024) and Bergemann and Bonatti (2024) for models where sellers do

not have limited supply and the role of the platform is to control which sellers compete for which

buyers. In Elliott et al. (2023b) a fully informed platform manipulates the outcome by making

firms uncertain about the set of buyers they can sell to and the other firms they are competing

with. In contrast to our work, consumer optimal outcomes does not imply sorting distortions.16

In Bergemann and Bonatti (2024), the consideration set of each consumer is auctioned off by the

platform, which also reveals the information it has about the buyer to the winning firm.

In search for a buyer-optimal matching, a designer resolves a trade-off between a more effi-

cient matching and information rent for buyers. This trade off, between efficiency and rent, recurs

in other contexts that also share with us a flexible information-design-like approach.17 In Con-

dorelli and Szentes (2020) a buyer can choose her distribution of value for the product of a seller

with bargaining power. Therefore, it faces a related trade-off between having a higher valuation

and larger information rent. In Armstrong and Zhou (2021), perfectly informing consumers about

which of two differentiated products is best for them relaxes competition but maximizes welfare,

while the consumer-optimal information structure dampens differentiation to some extent. Hidir

and Vellodi (2020) and Ichihashi (2020) study the incentives of a consumer to reveal information

to a multiproduct monopolist who chooses which product to sell. Information improves match

quality but exposes the buyer to price discrimination. The information revealed does not lead to
16In Elliott et al. (2023a), the platform does not control the consideration set of buyers but the information that

sellers receive about the buyers. On the theme of a platform providing information to sellers see also Yang (2022).
17As we explained in Section 5, we can map to each matching a distribution of posteriors over buyer valuations

that satisfies the martingale property. However, there are many matching with different payoff consequences corre-
sponding to any single distribution of posteriors. Hence, the techniques used to solve Bayesian persuasion problems
(e.g., see Kamenica and Gentzkow (2011), Bergemann and Morris (2016), and Dworczak and Martini (2019)) are
not directly applicable.
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an efficient outcome. In our own work, information is a byproduct of choices that affect both the

information structure and feasible surplus, while in the papers above the information structure is

a primitive that affects agents’choices, which may end up being inefficient.

Intuitively, one would expect the above trade-off between efficient matching and information

rents to be exacerbated when sellers are more heterogenous, as in that case it becomes more

costly to move away from PAM. Indeed, if all sellers are the same, sorting efficiency is irrelevant

and a platform that maximises buyer surplus can focus on producing information rent. In this

case, it is not difficult to see that, in light of Proposition 4, our problem is isomorphic to that of

identifying the segmentation of consumer’s demand that maximizes buyer surplus under a single

price-discriminating monopolist. It then follows from Bergemann et al. (2015) that there exists

an efficient matching where buyers obtain all surplus minus the profit from random matching.

Indeed, one could see our model as a generalisation of BBM whereby the informed monopolist is

a seller of an inventory of heterogeneous good and is prescribed by a third party which products

to allocate to which segments.

7 Concluding Remarks

In this last section, we discuss extending the analysis to the case of a partially informed platform,

private qualities and horizontally differentiated sellers. The take-away is that sorting inefficiency

remains a feature of the buyer-optimal matching with post-match bargaining.

Private Qualities.— The assumption that qualities of sellers are observable is plausible, but it

is worth asking whether our main insights survive if quality is observable by the platform but not

by buyers. We now argue that this is the case. However, while analogous sorting inefficiencies

remain, we observe that the platform can achieve a higher payoff for buyers in some equilibria.

It is easy to see that, even with unknown quality, the platform can implement the same buyer

surplus as in the BOM. For instance, assume µ > l/h and that sellers in (q∗,q] are matched

to a mix of high and low-value buyers in such a way that each such seller is indifferent and

each buyer’s posterior is such that the quality of sellers they are matched with is distributed in

(q∗,q] according to the truncated prior. Also assume that the remaining high-value buyers are

matched one-to-one to sellers in [q,q∗]. Then, there is an equilibrium in which all sellers with q

in [q,q∗] charge qh, since buyers infer sellers they are matched with from the algorithm, while all

sellers with q in (q∗,q] charge E [q | q > q∗] l. In this equilibrium, sellers in (q∗,q] deviating to a

different price are believed to be of quality q∗. buyer surplus is equal to that achieved by BOM

with observable quality. An analogous construction can be performed for µ < l/h.

However, there are other equilibria in which buyers do better. In particular, there is one where

all sellers in [q∗,q] post price q∗l sustained by the same out-of-equilibrium beliefs that a deviating

seller is of type q∗. The fact that the set of equilibrium prices will depend on the beliefs of buyers,

suggests that the buyer surplus-maximizing matching might induce posterior beliefs for sellers
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that are different than those induced by our BOM with known quality. Remarkably, this is not

the case. Roughly speaking, by placing sellers in a neighborhood of q in the support of the two

segments of buyers we built for Theorem 1, we can construct a matching and an equilibrium such

that all sellers in (q,q∗] charge qh and sellers in (q∗,q] charge ql. Note that the share of sellers

charging a price that results in a purchase by high-value buyers at a price acceptable also by

the low-value buyers is maximized by posteriors induced by the BOM. Hence, this is the buyer-

optimal equilibrium. We omit the tedious details involved in formalizing such a construction.

Partially informed platform.— Suppose the platform does not know buyers’values. Instead, it

gets independent binary signals about them, which are informative in the sense that a monopolist

seller sets the low price following one realization and the high one following the other. It is easily

seen that, on the one hand, the matching that maximizes sellers’ revenues is positive assortative in

the binary signal and sellers’ quality. On the other hand, in the buyer-optimal matching a portion

of higher quality sellers are matched with a mixture of low-signal and high-signal buyers, so that

they are, as in the full information case, indifferent between charging the low and the high prices.

Therefore, if µ > l/h BOM is also stochastically negative assortative. However, compared to the

case of full information, sorting distortions when µ > l/h (µ < l/h) are mitigated (amplified) by

the lower leverage that a partially informed platform has to manipulate sellers’ beliefs. A further

important difference with the full information case is that PAM is not always welfare-optimal.

Indeed, sometimes BOM is optimal. This is because, for lower levels of signal informativeness,

charging a high price results in a substantial likelihood of even the high-signal buyer refusing the

offer. Hence, persuading sellers to charge a low price becomes welfare relevant and an additional

trade-off arises, which either resolves in favor of BOM or PAM.

Horizontally differentiated sellers.— We conclude this section with an example suggesting

vertical differentiation is not key to observing inefficient sorting in buyer-optimal matchings,

when bargaining is post-match. Consider a model with two buyers, 1 and 2, and two sellers, A

and B. Assume that, with some probability, buyer 1 has value h for the product of A and value

l for the product of B, while buyer 2 has value h for the product of B and l for that A. With the

remaining probability, preferences are reversed. Given perfect correlation in values, an informed

platform can always match each product to the buyer that values it the most. However, such a

matching fully informs both sellers that they are facing a value h buyer, thus leaving no surplus

to buyers. Instead, by mismatching sufficiently often, that is matching sellers to buyers that like

them least until both sellers become indifferent between asking h or l, the platform can make

sure that both sellers charge price l, thus raising buyer surplus.
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Appendix: Proofs

Proof of Proposition 1. Denote with G the distribution of buyers’values. Since vq is supermodu-

lar, a classic result, the Fan-Lorentz Theorem, implies that supπ∈M (F,G)Eπ [vq], where M (F,G)

is the set of couplings of probabilities measures corresponding to F and G, has a unique comono-

tone solution which is given by PAM. Let w∗ be the maximised value of the problem above and

note it is an upper bound to the achievable welfare in any matching. To complete the proof of

the Proposition we observe that PAM induces complete information. Therefore, each seller q

sets price vq where v is the value of the buyer they are matched with. We conclude that the total

welfare achieved by PAM is equal to w∗ and accrues entirely to sellers.

Proof of Theorem 1. Focusing on the case µ ≥ l/h, we show that p∗ generates strictly larger

consumer surplus than p unless p = p∗ almost everywhere. The case µ ≤ l/h is analogous and

we omit the proof.

For each p, let us defined the CDF Gp as follows:

Gp (x) =

∫ x
q χ p (q) ph (q)dF (q)∫ q
q χ p (q) ph (q)dF (q)

.

Also, define qp by ∫ q

qp

l
h

dF (q) =
∫ q

q
χ

p (q) ph (q)dF (q) . (4)

Finally, define the CDF H p by H p (x) = 0 if x ≤ qp and by

H p (x) =

∫ x
qp

l
hdF (q)∫ q

qp
l
hdF (q)

if x > qp.

We now show that H p first-order stochastically dominates Gp. To see this, first note that if

x ≤ qp then H p (x) = 0 ≤ Gp (x). Moreover, for all x > qp,

1−H p (x) =

∫ q
x

l
hdF (q)∫ q

qp
l
hdF (q)

=

∫ q
x

l
hdF (q)∫ q

q χ p (q) ph (q)dF (q)
≥

∫ q
x χ p (q) ph (q)dF (q)∫ q
q χ p (q) ph (q)dF (q)

= 1−Gp (x) ,

where the first and last equalities are the definitions of H p and Gp, respectively, the second

equality follows from (4) and the inequality follows from χ p (q)≤ 1 and ph (q)≤ l/h whenever

χ p (q) = 1. Then previous inequality chain implies that H p (x)≤ Gp (x) even when x > qp.
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Therefore,

∫ q

q
χ

p (q) ph (q)q(h− l)dF (q) =

[∫ q

q
χ

p (q) ph (q)dF (q)

][∫ q

q
q(h− l)dGp (q)

]

=

[∫ q

qp

l
h

dF (q)
][∫ q

q
q(h− l)dGp (q)

]
≤
[∫ q

qp

l
h

dF (q)
][∫ q

q
q(h− l)dH p (q)

]

=
∫ q

qp

l
h

q(h− l)dF (q) ,

where the first and last equalities follows from the definitions of Gp and H p, respectively. The

second equality is implied by (4) and the inequality follows from the fact that H p first-order

stochastically dominates Gp.

It remains to show that∫ q

qp

l
h

q(h− l)dF (q)≤
∫ q

q∗

l
h

q(h− l)dF (q) .

In order to do so, it is enough to argue that qp ≥ q∗. Observe that

∫ q

q∗

(
1− l

h

)
dF (q) = 1−µ ≥

∫ q

q
χ

p (q) pl (q)dF (q)≥ h− l
l

∫ q

q
χ

p (q) ph (q)dF (q)

=
h− l

l

∫ q

qp

l
h

dF (q) =
∫ q

qp

(
1− l

h

)
dF (q) ,

where the first equality is the explicit definition of q∗ and the first inequality is a feasibility

constraint for the matching p. The second inequality follows from the fact that if χ p (q) = 1

then ph (q)h ≤ (pl (q)+ ph (q)) l, that is, pl (q)≥ ph (q) [(h− l)/l]. The second equality is again

implied by (4).

Proof of Proposition 2. If µ > l/h, profit under the FRM matching is µhE[q]. Then the profit

under BOM is smaller than that under FRM for µ > l/h, if

F(q∗)E [q | q ≤ q∗]h+(1−F(q∗))
l
h
E [q | q > q∗]h < µhE[q]

where we have used the fact that albeit sellers with q ≥ q∗ charge l, they are indifferent between

charging l and h. Dividing both sides by µ , simplifying h away and rewriting E[q] we get

F(q∗)
µ

E [q | q ≤ q∗]+
1−F(q∗)

µ

l
h
E [q | q > q∗]<

< F(q∗)E [q | q ≤ q∗]+ (1−F(q∗))E [q | q > q∗] .

Now focus on the inequality between the left and right side of the above. Since q∗ =F−1
(

µh−l
h−l

)
,
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we have
F(q∗)

µ
+

1−F(q∗)
µ

l
h
= 1.

Hence, both sides are weighted sums of the same conditional expectations. Then, to conclude

the proof of the statement that profit under BOM is below profit with FRM observe that

E [q | q > q∗]> E [q | q ≤ q∗]

and, because µ ≥ l/h,

F(q∗)
µ

> F(q∗) and
1−F(q∗)

µ

l
h
< 1−F(q∗).

We now move to discuss welfare comparisons continuing to assume µ > l/h. The FRM

welfare in this case is the same as profit, that is µhE[q]. Recalling the decomposition above and

noting that F(q∗) = µh−l
h−l , rewrite it as

µhE[q | q ≤ q∗]
µh− l
h− l

+µhE[q | q ≥ q∗]
h(1−µ)

h− l
.

The BOM welfare is

hE[q | q ≤ q∗]F(q∗)+
(

l
h

h+
h− l

h
l
)
E[q | q > q∗](1−F(q∗)) =

hE[q | q ≤ q∗]
µh− l
h− l

+

(
l
h

h+
h− l

h
l
)
E[q | q > q∗]

h(1−µ)

h− l
.

Subtracting FRM from BOM we get

(1−µ)hE[q | q ≤ q∗]
µh− l
h− l

+

(
l +

h− l
h

l −µh
)
E[q | q > q∗]

h(1−µ)

h− l
.

This is greater than zero if

(µh− l)E[q | q ≤ q∗]
h(1−µ)

h− l
+

(
l +

h− l
h

l −µh
)
E[q | q > q∗]

h(1−µ)

h− l
≥ 0

or, as long as µ < 1,

(µh− l)E[q | q ≤ q∗]+
(

h− l
h

l −µh+ l
)
E[q | q > q∗]≥ 0. (5)

Now note that (µh− l)≥ 0 by assumption. So if h−l
h l −µh+ l > 0 then the welfare of BOM is

above that of FRM. Rewriting this term gives the condition

µ <
l
h
+

h− l
h

l
h
.
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To conclude the proof, now rewrite (5) as

l
h
(h− l)E[q | q > q∗]≥ (µh− l) [E[q | q > q∗]−E[q | q ≤ q∗]] .

Then, note that as l/h goes to zero the term on the left also goes to zero while the term on the

right does not since q∗ = F−1
(

µh−l
h−l

)
.

Proof of Proposition 3. In what follows we present the main arguments without explicitly ap-

proximating our model with a sequence of finite games. It will be clear that the proof can be

made precise by introducing such sequences but the notations associated would be demanding.

When k = 1, we approximate the continuous model with finite ones so that k > 1 along the

sequence but the fraction of buyers and sellers converge to one.

Consider first the case of a platform which maximises buyer surplus. We first show that the

worst sellers will be unmatched, that is, the set of unmatched sellers is an interval starting from

zero. By way of contradiction, suppose there are two qualities, q1 and q2, q1 < q2, the q1-seller

is matched but the q2-seller is not. Then the q2-seller could deviate and post a slightly higher

price than the q1-seller. Since this seller generates more surplus than the q1-seller, the platform

strictly prefers to match the q2-seller, so the deviation is profitable.18

Next, we consider the set of sellers who are matched with l-buyers. We explain the price

of these sellers are determined by the largest quality of unmatched sellers. To this end, let qc

denote the unmatched seller’s quality who would provide the largest surplus to an l-buyer among

all the unmatched sellers. That is, qc = argmaxq {lq− τ (q) : q is unmatched}. We argue that if

a q-seller is matched with an l-buyer then

ql − τ (q) = qcl − τ (qc) .

First, the right-hand-side cannot exceed the left-hand-side for otherwise the platform can increase

the buyers’ surplus by matching the qc-seller with an l-buyer instead of the q-seller. Second, if

the left-hand-side is strictly larger then the q-seller can deviate and increase τ (q) slightly so that

the inequality is still satisfied. Since the platform’s response to such a deviation is still to match

the q-seller, the deviation is profitable19. Next, we explain that τ (qc) = 0. If not, the qc-seller

can deviate and lower τ (qc). By the previous displayed equality, the deviating qc-seller could

generate strictly more surplus than any of the seller who was matched with an l-buyer. Hence,

the platform will find it optimal to match her. As long as the decreased price is positive, the

deviation is profitable because the qc-seller was unmatched and received a payoff of zero. Now
18Note that the platform cannot find an optimal matching in which the q2-seller is unmatched. The reason is that

in such a match the platform’s payoff must be the same as in the absence of the deviation. However, if the platform
uses the original matching except it matches the deviating q2-seller instead of the q1-seller, its payoff increases
strictly.

19The precise argument is that, by the previous paragraph, any optimal matching matches the q-seller. Therefore,
if the platform does not match the deviator, buyer surplus decreases strictly. This implies that, if the change in τ (q)
is small, the platform still find it optimal to match the deviator.
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we argue that qc is the largest quality for which a q-seller is unmatched. If there is a q > qc such

that the q-seller is unmatched, then this q-seller can set a strictly positive price so that it generates

strictly more surplus to an l-buyer than qc-seller would. By the previous displayed equality, this

seller would generate more surplus to an l-buyer than any other seller who is matched with an

l-buyer. Therefore, the platform would find it optimal to match him and the deviation would be

profitable. To summarize, we have shown that qc = F−1(k− 1), the set of unmatched sellers is[
q,qc

]
, τ (qc) = 0, and the price of a q-seller who is matched with a l-buyer is

τ (q) = (q−qc) l. (6)

Let us turn our attention to those sellers who are matched with h-buyers. As will be argued,

the price of such sellers will be determined by the largest quality seller who is matched with

an l-buyer. To this end, let qc denote the seller who is matched with an l-buyer who would

provide the largest surplus to an h-buyer among all sellers matched with l-buyers. That is, qc =

argmaxq {hq− τ (q) : q is matched with an l-buyer}. Note that qc is indeed the largest quality of

a seller who is matched with an l-buyer20. Then, it must be that

hq− τ (q) = hqc − τ (qc) . (7)

If the right-hand-side was strictly larger than the left-hand-side, the platform could strictly in-

crease buyers’ surplus by matching an h-buyer with the qc-seller instead of the the q-seller,

letting the q-seller to remain unmatched, and matching the l-buyer (who was originally matched

with the qc-seller) with the qc-seller. By equation (6) and τ (qc) = 0, this l-buyer’s payoff is

unaffected by such a change. However, the h-buyer’s payoff would strictly increase. Suppose

now that the left-hand-side is strictly larger. Then the q-seller could slightly increase the price so

that the inequality remains strict. We have to argue that after such a deviation, the platform still

matched the q-seller. If the platform lets the q-seller be unmatched, the best it can do is to create

the same matches except to match the h-buyer who was matched with the q-seller with the qc-

seller and match the l-buyer who was matched with the qc-seller with the qc-seller21. Again, the

payoff of the l-buyer would remain the same but now, the payoff of the h-buyer would decrease.

To conclude the equilibrium matching is PAM, it remains to show that the sets of sellers who

are matched with l-buyers and h-buyers are also intervals. In other words, we need to show that

20To see this, note that equation (6) implies

hq− τ (q) = hq− (q−qc) l = (h− l)q+ lqc,

which is increasing in q.
21To see this note that it is without loss to assume that, in the new matching, the h-buyer (who was matched with

the deviating seller) is matched with a seller who was previously either unmatched or matched with an l-buyer. The
latter cannot be optimal because the deviating q-seller still generates a larger surplus for the buyer than any of the
sellers who were matched with an l-buyer. The former also cannot be optimal because, by equation (6), unmatched
sellers generate less surpluss to h-buyers than those sellers who are matched with l-buyers.
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the quality of each seller matched with an h-buyer is larger than the quality of a seller matched

with an l-buyer. Since the largest seller matched with an l-buyer is qc, it is enough to show that

the quality of any seller matched with an h-buyer exceeds qc. By contradiction, suppose that

q ∈ (qc,qc) and the q-seller is matched with an h-buyer. Observe that

τ (q) = h(q−qc)+ l (qc −qc)< l (q−qc) ,

where the equality follows from (6) and (7) and the inequality follows because q < qc (so

h(q−qc) is negative) and qc < q (so l (qc −qc) < l (q−qc)). Suppose now that this q-seller

deviates by increasing his price slightly so that the previous inequality is still satisfies. By the

previous displayed inequality chain and equation (6), this q-seller would generate more surplus

to an l-buyer than any seller who is matched with an l-buyer. Consequently, the platform would

find it optimal to match the seller, and hence, the deviation is profitable. We conclude that qc

solves F (qc) = k−1+[1−µ] = k−µ .

Consider now a welfare-maximizing platform. It is not hard to show that the q-seller who is

matched with an l-buyer sets price lq and the q-seller who is matched with an h-buyer sets price

hq in equilibrium. If the price was lower, the seller could raise it slightly. Since that increase in

price does not affect welfare, the platform will still match this seller with the same buyer. Let us

now argue that the equilibrium matching is PAM. First, it is clear that the worst sellers will be

unmatched because a high quality seller can offer a small but positive price and guarantee that

she will be matched. It remains to show that higher quality sellers are matched with h-buyers.

Suppose, by contradiction, that q < q′ and that the q-seller sells to an h-buyer and the q′-seller

sells to an l-buyer. Then the q′-seller could deviate by setting price slightly below hq′ instead

of setting lq′. Such a deviation essentially commits the seller not to generate surplus unless she

is matched with an h-buyer. After such a deviation, the platform strictly prefers matching an

h-buyer with the q′-seller to matching him with the q-seller. Finally, note that the arguments we

made in this paragraph are also applicable if the platform maximizes the sellers’ profits. Hence,

the matching will also be PAM in this case.
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