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Abstract

We characterize equilibria of oligopolistic markets where identical firms with con-
stant marginal cost compete a’ la Cournot. For given maximal willingness to pay and
maximal total demand, we first identify all combinations of equilibrium consumer and
producer surplus that can arise from arbitrary demand functions. Then, as a further
restriction, we fix the average willingness to pay above marginal cost (i.e., first best
surplus) and identify all possible triples of consumer surplus, producer surplus and
deadweight loss.
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1 Introduction

Antoine Augustin Cournot’s pioneering mathematical analysis of monopoly and oligopoly,
published in his Recherches sur les Principes Mathematiques de la Theorie des Richesses
(1838), has had an enormous influence in economics.1 Cournot’s model has been a building
block for a large number of seminal works in a variety of fields, including international trade
(e.g., Brander and Krugman (1983), Atkeson and Burstein (2008)) the study of market power
in macroeconomics (Hart (1982)) and industrial organization (Bresnahan and Reiss (1990),
Berry (1992)) and antitrust merger policy (Farrell and Shapiro (1990)). After nearly two
hundred years, countless papers have explored and extended Cournot’s work, which remains
a benchmark for theories of price formation in the absence of perfect competition (Vives
(1989, 1999)).

In this paper we advance and sistematize the existing literature, by characterizing all
equilibrium outcomes (i.e., triples of consumer surplus, producer surplus and dead-weight
loss) that can possibly arise from arbitrary demand functions with given first-best surplus
in oligopolistic markets with competition a’ la Cournot — including monopoly as a special
case. One main assumption is maintained: firms have an identical and constant marginal
cost.

Suppose marginal cost of production is zero and there is a unit mass of consumers.
Then, the first best surplus of a demand function, let’s denoted it with s, is the average
willingness to pay of consumers. Let’s represent market outcomes as points on the positive
quadrant of a Cartesian plane, with profits nπ (n is the number of competing firms) on
the x-axis and consumer surplus, cs, on the y-axis. Feasible outcomes satisfy nπ + cs ≤ s,
and deadweight loss is s − cs − nπ. As we show in Propositions 2-4, the set of achievable
market outcomes is roughly characterized by the triangle described by the points (nπs, s −
nπs), (nπ

s, 0), (s, 0), with πs ≤ πs.2 For illustration see Figure 1 here and Figure 6 at the
end of the paper.

Remarkably, among all equilibria of all possible demand functions, the one that maxi-
mizes consumer surplus is efficient and also minimizes industry profit. Moreover, as n→∞
then nπs → 0 and nπs → s. Hence, the achievable set converges to the entire Pareto fron-
tier. This confirms conventional wisdom that in the Cournot model inefficiency, but not
necessarily profits, disappear as competition increases.

The only-if part of our proofs are constructive. For each achievable market outcome
(i.e., triple of consumer surplus, producer and loss) we present an (inverse) demand function
and a symmetric oligopoly equilibrium quantity that attains it. Our construction relies on
a set of demand functions that, in equilibrium, induce a (common) residual demand that is
unit-elastic with respect to profit, leaving firms indifferent between playing equilibrium and

1Treatment of those subjects remains almost unchanged to this day, to the point that contemporary
economics students would hardly notice if excerpts from the Recherches were to appear in textbooks.

2This description is not precise as for πs < πs the line connecting (nπs, s− nπs) to (nπs, 0) need not be
straight.
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Figure 1: Within blue lines are achievable (nΠ, CS) couples in the set of all demand functions
with s = 3/4, maximal valuation = mass of consumers = 1 and c = 0 — for n = 1, n = 2
and n = 5.

producing alternative quantities. In the monopoly case, for any given profit level, a single
demand function can be used to span all achievable combination of consumer and producer
surplus. Since the monopolist is indifferent, we start from the zero-surplus equilibrium quan-
tity and increase it until all consumers are served. However, we emphasize, extending the
analysis beyond the monopoly case entails substantial technical difficulties. With competi-
tion, the inverse demand which makes residual demands unit-elastic at any given profit level
has, typically, a unique equilibrium quantity. Hence, fixed total surplus, a different demand
must be found for each achieavable combination of consumer and producer surplus. It is
not possible to perfectly trade-off profit and consumer surplus at all profit-levels without
introducing dead-weight loss. As a result, the set of feasible surplus / profit outcomes is not
a right-triangle as in the monopoly case (see first vs second and third panel in Figure 1 and
6).

Beyond having theoretical interest, obtaining bounds to market outcomes can be useful
for a variety of applied purposes. For instance, our results can inform cost-benefit analysis
of altering the competitive landscape in cases where good estimates of the demand curve are
not available but nonetheless a bound can be confidently placed on the maximum willingness
to pay. What’s the best case for consumers if a monopoly is introduced in a certain product
market? What is the worst case scenario following a merger or a policy that reduces the
number of competitors? These are some of the questions whose answers can be informed by
our results.

Three papers are most closely related. First, Condorelli and Szentes (2020) identify the
highest level of consumer surplus attainable in a monopolistic market, assuming (inverse)
demand exhibits a given mean consumer value. The maximum consumer surplus is attained
when the demand is unit-elastic (with respect to profit) and the price is such that all con-

3



sumers are served. Second, as shown in Neeman (2003) and Kremer and Snyder (2018),
it turns out that said unit-elastic demand also generates the minimum monopolist profit.
Taken together, these results fully characterize the couples of producer and consumer sur-
plus achievable in a monopoly market with given average consumer value. In our paper, we
generalize this characterization to the case of an arbitrary number of firms competing a’ la
Cournot.3

There is a small literature that seek to identify bounds on market outcomes in Cournot
oligopoly, based on specific properties of demand functions.4 Anderson and Renault (2003)
derive bounds on the ratios of deadweight loss and consumer surplus to producer surplus
based on the degree of curvature of the (inverse) demand function. They show that the
“more concave” is the demand, the larger the share of producer surplus to overall surplus
and the smaller is the consumer surplus relative to producer surplus. Johari and Tsitsiklis
(2005) establish a 2/3 lower bound on the ratio between the sum of consumer and producer
surplus and first-best surplus, when the (inverse) demand function is affine and firms are
heterogeneous, with their cost function convex. Tsitsiklis and Xu (2014) extend the previous
paper by providing smaller lower bounds for general convex (inverse) demand. Moreover,
they show that arbitrary high efficiency losses are possible if demand is allowed to be concave.
In contrast to these papers, our bounds do not rely on knowledge about the curvature of the
demand function. Also, we obtain a complete characterization of all consumer and producer
surplus couples for any given first-best surplus. However, we only focus on the case where
firms are symmetric and their cost function is linear.

The paper is organized as follows. After introducing the model, we study the case
where demand functions are bounded but there is no restriction on first-best surplus. In
section 4, which contains the main results of this paper, we impose the additional restriction
on the first-best surplus.

2 Model

A market is populated by a mass b > 0 of consumers and n ∈ N+ firms, all supplying an
homogeneous good at common marginal cost c ∈ (0,+∞). Firms compete a’ la Cournot:
each firm i decides the quantity qi ∈ [0,+∞) that it brings to the market and a non-negative
price is determined by the market-clearing condition. In particular, let P : [0, b] → [0, u]
be a non-negative, left-continuous and non-increasing inverse demand curve faced by firms.
Here, u stands for the maximal willingness to pay consumers may have, which we assume is
finite and satisfies u > c. Omitting reference to u and b, we let P be the set of all admissible
inverse demand functions. If Q =

∑
i qi is the total supply, then the market price is P (Q),

3Kremer and Snyder (2018) also compute tight bounds on deadweight loss for a market with homogeneous
firms engaging in Cournot competition. In terms of our carachterization, they identify the point that
generates no consumer surplus and minimizes profit (i.e., (nπs, 0) in Figure 1 and Figure 6.)

4A related problem, explored in Carvajal et al. (2013), consists in identifying revealed preference tests
for Cournot equilibrium.
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firm i’s profit is (P (Q)− c)qi and consumer surplus is
∫ Q
0
P (x)dx−QP (Q).

In this analysis, we maintain that firms are identical and, without loss of generality,
we focus on symmetric equilibria, where all firms produce the same quantity.5 We say that
(q, . . . , q) is a symmetric Cournot equilibrium of P if

q = arg max
x≥0

[P ((n− 1)q + x)x− cx] ,

and in this case we write q ∈ E(P ). Moreover, we denote with CS(P, q) the consumer surplus
and with Π(P, q) the profit of each firm in an equilibrium q of P .6

Next, let π = b(u−c)/n and observe that this is the maximum profit that can be made
by a single firm in a symmetric equilibrium for a demand in P , since the maximum price is
u while the maximum quantity is b. Also, let q(π) = π/(u − c), or for short simply q when
the profit level is unambiguous, be the individual production that delivers profit π when the
price is u. In other words, q(π) is the minimal quantity that is able to deliver individual
profit π for demands in P .7

3 Bounding Consumer and Producer Surplus

The following family of demand functions in P plays a key role in the analysis that follows.
For each π ∈ [0, π̄] and q ∈ [q(π), b/n] we define

P(π,q)(Q) =


u if Q ∈ [0, π

u−c + (n− 1)q]
π

Q−(n−1)q + c if Q ∈ ( π
u−c + (n− 1)q, b],

0 if Q > b.

The next Lemma characterizes equilibria in this family of inverse demand functions.

Lemma 1 For each π ∈ (0, π̄] and q ∈ [q(π), b/n], q ∈ E(P(π,q)) and Π(P(π,q), q) = π.

Proof. Given that P (nq) = π/q + c, it is easy to verify that Π(P(π,q), q) = π if q is an
equilibrium of P(π,q). To see the latter, denote with PR

(π,q)(qi, q−i) the residual demand faced

5We show in Appendix A that for any asymmetric equilibrium there exists a symmetric one where the
same total quantity is produced. Hence, consumer surplus and total industry profit are the same in the two
equilibria.

6Following McManus (1964), a symmetric equilibrium exists under the stated assumptions.Equilibria may
exists even for unbounded demand. However, no bound can be placed on market outcomes if the demand
can be unbounded and no further restriction is imposed, as we shall show toward the end of the next section.

7It will become apparent that, for any (u, c), only u − c is relevant for the determination of profit and
consumer surplus. Hence, setting c = 0 would be just a normalization. We maintain the dependence on c
for added transparency, since price still depends on cost.
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by firm i under demand P(π,q), with q−i representing the total quantity produced by firms
other than i. Observe that for q−i = (n− 1)q we have

PR
(π,q)(qi, (n− 1)q) =


u if qi ∈ [0, π

u−c ]
π
qi

+ c if qi ∈ ( π
u−c , b− (n− 1)q],

0 if qi > b− (n− 1)q.

It follows firm i is indifferent among any quantity in the interval [π/(u−c), b−(n−1)q], as they
all provide profit π. To conclude the proof, observe that i’s profit is zero for qi > b− (n−1)q
and it is qi(u− c) ≤ π for qi ≤ π

u−c .

As explicitly shown in the proof of the Lemma above, the demand function P(π,q)

exhibits unit-elasticity of the residual demand with respect to profit for quantities in (π/(u−
c), b − (n − 1)q), when all other firms supply q. In particular, for each individual firm,
producing any quantity in (π/(u−c), b−(n−1)q) is a best reply to the other firms producing
q and generates profit π.

Figure 2 illustrates the geometry of the demand functions in the class above, for the
case where u = b = 1 and c = 0. The first panel depicts two demand functions, P(π,π) and
P(π,1/n), that generate the same profit but induce two different equilibrium quantities, the
minimal and the maximal. The dotted curve shows P(π,q) as equilibrium q varies in [π, 1/n].
The second sub-figure depicts two demand functions, P(π,1/n) and P(π′,1/n), that generates
different profit levels but induce the same equilibrium quantity. Observe that demands are
fully ordered along both dimension π and q. The following useful Lemma is immediate to
verify and we state it without proof.

Lemma 2 P(π′,q) ≥ P(π,q) if π̄ ≥ π′ ≥ π ≥ 0 and P(π,q′) ≥ P(π,q) if b/n ≥ q′ ≥ q ≥ q(π).

The next result shows that any demand function that has an equilibrium q and gener-
ates individual profit level π is dominated by P(π,q) pointwise and that the equilibrium q of
P(π,q) achieves the largest consumer surplus among symmetric equilibria q of demands in P
if π is equilibrium profit.

Lemma 3 If P ∈ P and q ∈ E(P ) and Π(P, q) = π then P ≤ P(π,q), and CS(P(π,q), q) ≥
CS(P, q).8

When n = 1 the result is analogous to Lemma 1 in Condorelli and Szentes (2020),
which is here generalized beyond the monopoly case.

Proof. First observe that if q is a Cournot equilibrium under P , then for any x ≥ 0,

π ≥ x [P (x+ (n− 1)q)− c] .
8Note that, being both decreasing and left-continuous, unless P = P(π,q), P and P(π,q) will differ on a

non-zero measure of the domain [0, b/n].
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Figure 2: Examples of demands P(π,q) for b = u = 1 and c = 0
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By denoting Q = x+ (n− 1)q and rearranging, it follows that, for Q ∈ [(n− 1)q,+∞),

P (Q) ≤ π

Q− (n− 1)q
+ c.

Next, we show that P (Q) ≤ P(π,q)(Q) for Q ≥ 0. This follows from the inequality
above for Q ≥ (n− 1)q. For Q < (n− 1)q ≤ (n− 1)q+ π/(u− c) the inequality follows from
the fact that P(π,q)(Q) = u in that range, while P (Q) ≤ u by assumption.

We now establish that P(π,q) generates (weakly) larger consumer surplus than P . In
particular

CS(P(π,q), q)− CS(P, q) =

∫ nq

0

(P(π,q)(x)− P (x))dx ≥ 0,

because P(π,q) ≥ P by the first part of the proposition.

For each π ∈ (0, π̄], define the inverse demand function Pπ = P(π,b/n). In the symmetric
equilibrium of this demand, all b consumers are served. The following Lemma establishes
that there exists no symmetric equilibrium of any demand function generating individual
firm profit π that attains a higher consumer surplus than the equilibrium b/n of Pπ.

Lemma 4 For any P ∈ P and q ∈ E(P ) with Π(P, q) = π, we have CS(Pπ, b/n) ≥
CS(P, q).9

Proof. Lemma 1 establishes that b/n is an equilibrium of Pπ and q is an equilibrium of P(π,q).
Lemma 3 establishes that CS(P(π,q), q) ≥ CS(P, q). To see that CS(Pπ, b/n) ≥ CS(P(π,q), q)
recall the last equation of the Lemma 3 and observe that b/n ≥ q and, for each π ∈ [0, π̄]
and q, q′ such that π/(u− c) ≤ q′ ≤ q ≤ b/n, we have P(π,q′)(Q) ≤ P(π,q)(Q) for Q ∈ [0,∞),
by Lemma 2.

We are now in a position to state the main result of this section, which characterizes
all couples of consumer and producer surplus that can arise for some demand function in P .

Proposition 1 There exists P ∈ P and q ∈ E(P ) such that Π(P, q) = π, CS(P, q) = w if
and only if (π,w) ∈ {(x, y) : x ∈ (0, π̄], y ∈ [0, CS(Px, b/n))}.

Proof. The only-if part is obvious in light of Lemma 4. That is, there can’t be any equilib-
rium payoff couple outside the specified set. To prove the if-part consider P(π,q) and observe
that, for each π ∈ (0, b(u− c)), q is an equilibrium in light of Lemma 1 and CS(P(π,q), q) is
continuous and strictly increasing in q, and CS(P(π,q), q) = 0.

Contour lines for the sets of feasible combinations of consumer surplus, CS, and (total
industry) profit are illustrated in the next figure 3 for n = 1, 2, 5, assuming b = u = 1 and

9This result also illustrate that no absolute bound can be placed on the ratio of consumer to producer
surplus. In fact, lim

π→0
CS(Pπ, b/n)/π =∞ and lim

π→π̄
CS(Pπ, b/n)/π = 0.
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c = 0 (i.e., limc↓0). As it is apparent from the picture, the set of feasible producer/consumer
surplus combinations expand as n grows and the market becomes more competitive. Equi-
librium alone imposes very little restrictions on how the surplus is shared in an oligopolistic
market populated by a large number of identical firms with constant marginal cost.

Figure 3: Achievable profit and surplus couples in P (b = u = 1, c = 0)

n=2

n=1

n=5

Profit

CS

CS

CS

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

In light of Lemma 4, finding an inverse demand function in P and an equilibrium
that maximizes consumer surplus in a Cournot market with n firms and marginal cost c is
equivalent to maximizing CS(Pπ, b/n) in π ∈ (0, π̄).

Corollary 1 Let π∗ = π̄
en
, then CS(Pπ∗ , b/n) = π̄(n − 1) + π∗ ≥ CS(P, q) for any P ∈ P,

q ∈ E(P ).

Proof.

max
π∈(0,π̄)

CS(Pπ, b/n) = max
π∈[0,π̄]

∫ b

0

(Pπ(x)− c) dx− nπ =

= max
π∈[0,π̄]

[∫ π/(u−c)+(n−1)b/n

0

u dx+

∫ b

π/(u−c)+(n−1)b/n

π

x− b(n− 1)/n
+ c dx− nπ − bc

]
=

= max
π∈[0,π̄]

[
π
(

1− n− log
(π
π̄

))
+ π̄(n− 1)

]
.

The objective function above is strictly concave and it is routine to verify that setting π = π∗

solves the stated maximization problem.
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At the consumer-optimal equilibrium, individual firm’s profit is π∗ (while total industry
profit is nπ∗), consumer surplus is π̄(n−1) +π∗, the price is c+nπ∗/b and the total demand
is b. There is no efficiency loss arising from pricing above marginal cost.

Before concluding this section with an example, we observe that lim
π̄→∞

π∗ =∞. There-

fore, as we claimed without proof in footnote 6, if there is no bound on either maximal
demand b or maximal valuation u, then no bounds can be placed on consumer and producer
surplus either.

Example 1 The price level for the equilibrium under the consumer optimal demand for
u = b = 1, c = 0 is e−n, while the price level for equilibrium under the standard linear
inverse demand curve P (Q) = 1−Q is 1

n+1
. The price decreases much faster in the optimal

demand curve as opposed to the linear demand, as the number of firms grows. For instance,
at n = 4 the market price is 0.20 under the linear demand curve while it is approximately
0.02 for Pπ∗. On the other hand, quantity is always 1 in the optimal demand while it is
n/(n+ 1) in the linear demand.

4 Bounding Consumer, Producer Surplus and Dead-

weight Loss

The aim of this section is to provide a complete characterization of all possible couples of
consumer and producer surplus for any given level of the first-best surplus available given
demand and production cost.

We define the first-best surplus under demand P , and denote it FB(P ), as usual
omitting reference to cost, as the consumer surplus that is attained when the quantity
supplied is such that exactly all consumers with valuation above the cost are served. More
formally, for each demand P ∈ P , we define

FB(P ) =

∫ b̂(P )

0

P (x)dx− b̂(P )c,

where b̂(P ) = max{q : P (q) ≥ c} and is well-defined because P is left-continuous and u > c.
Hence, again omitting reference to c, for s ∈ (0, nπ̄] define the set Ps = {P ∈ P : FB(P ) = s} .
Note that FB(P ) ≤ b(u− c) = nπ̄ for P ∈ P . Hence 0 ≤ s ≤ nπ̄.

Next, observe that, for each π ∈ [0, π̄],

FB(Pπ) = CS(Pπ, b/n) + nΠ(Pπ, b/n) = π

[
1− log

(
nπ

b(u− c)

)]
+ (n− 1)π̄,

where the first equality follows because b̂(Pπ) = b given that Pπ(b) = c + nπ/b > c. Then,
observe that FB(Pπ) is continuous and strictly increasing in π and that FB(P0) = (n− 1)π̄
while FB(Pπ̄) = b(u− c) = nπ̄.
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Now, we define the profit level πs which, as it will be shown later, is the minimum
profit that is attainable when the demand is in Ps.

Definition 1 For s ∈ (0, (n− 1)π̄] let πs = 0, for s ∈ ((n− 1)π̄, nπ̄] let πs solve s =
FB(Pπs).10

In fact, our first result in this section shows that the symmetric equilibrium b/n under
Pπs = P(πs,b/n) minimizes individual profit among all symmetric Cournot equilibria for inverse
demands in Ps. Since for s < (n− 1)π̄, we have πs = 0 and P0 /∈ Ps, we abuse notation by
defining, only for s ∈ [0, (n− 1)π̄]

Pπs(Q) =


sn

b(n−1) + c if Q ∈ [0, b(n− 1)/n]

c if Q ∈ (b(n− 1)/n, b],
0 if Q > b.

This guarantees that FB(Pπs) = s and that b/n is an equilibrium while Π(Pπs , b/n) = πs = 0.

Lemma 5 πs = Π(Pπs , b/n) ≤ Π(P, q) for any P ∈ Ps and q ∈ E(P )

Proof. The statement is obvious for s ∈ (0, (n−1)π̄] as in equilibrium πs = 0. Therefore, we
focus on s ∈ ((n−1)π̄, nπ̄]. By way of contradiction, suppose an equilibrium q of some P ∈ Ps
generates individual profit π′ such that πs > π′. Then, consider that each firm producing
b/n is an equilibrium under Pπ′ . Furthermore, FB(Pπ′) ≥ FB(P ) given the definition of FB
(note b/n ≥ q and Pπ(b) > c) and the fact that Pπ′ = P(π′,b/n) ≥ P(π′,q) ≥ P by Lemma 2 (first
inequality) and Lemma 3 (second inequality). However, since FB(Pπ) is strictly increasing
in π, the assumption that πs > π′ implies that s = FB(Pπs) > FB(Pπ′) ≥ FB(P ) = s, a
contradiction.

It is a corollary of the previous Lemma that the equilibrium b/n of Pπs not only
minimizes producer surplus, but also maximizes consumer surplus among all equilibria for
demands in Ps.

Corollary 2 s− nπs = CS(Pπs , b/n) ≥ CS(P, q) for any P ∈ Ps and q ∈ E(P ).

Note that when n = 1 and s > 0 then πs > 0. Hence, as expected, in the monopoly
case there is no demand function that would let consumers extract the entire surplus s.

Proof. First, observe that the symmetric equilibrium of Pπs generates consumer surplus
equal to s−nπs as the quantity supplied in total is equal to b. Then, by way of contradiction,
assume that there exists P ∈ Ps and a symmetric Cournot equilibrium of P that generate

10If b = u = 1 and c = 0, πs = n−1−ns
nW−1(

n−1−ns
e )

for s > n−1
n . Here W−1 is the lower branch of the Lambert

W function. While it cannot be expressed in terms of elementary functions it is defined by W−1(xex) = x
for x ≤ −1.
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individual profit π and larger consumer surplus. Because, s − nπ is an upper bound of the
consumer surplus achievable under P , our contradiction assumption implies that s − nπ >
s−nπs, or, equivalently, that π < πs, which is in contradiction with the result of proposition
5.

Consider consumer surplus and industry profit, nΠ, in the positive quadrant of a
Cartesian plane and identify the total surplus s as a linear constraints that bounds their sum.
See the dotted line figure 6 for illustration. Call achievable set, the set of consumer surplus,
producer surplus and dead-weight loss triples that are achievable in some equilibrium of some
demand in Ps. Clearly, any achievable nΠ is such that nπs ≤ nΠ ≤ s, while consumer surplus
is bounded above by s − nΠ and below by zero. We now characterize the upper contour
line of the achievable set. More precisely, we now show, that, for any s, any combination
of producer and consumer surplus (nπ, s − π) for π ∈ [πs, s/n] can be achieved by some
symmetric Cournot equilibrium of some demand in Ps.

Before doing so, we introduce a class of demand functions that will be used to prove
further results. For each π ∈ (0, π̄], q ∈ [q(π), b/n] and k ∈ [q(π) + (n− 1)q, nq] let,

P k
π,q(Q) =


P(π,q)(k) if Q ∈ [0, k]
P(π,q)(Q) if Q ∈ (k, b],
0 if Q > b.

This is a truncated version P(π,q). of Because P k
π,q(Q) = P(π,q)(Q) for Q ≥ k and k ≤ nq, light

of Lemma 1, it is immediate to see that P k
π,q has an equilibrium q that generates individual

profit π. The next figure 4 depicts an example of a demand function P k
π,q for b = u = 1 and

c = 0 and the division of the first-best surplus between consumer surplus (CS), profits (nπ)
and deadweight loss (DWL) in the q-equilibrium.

Proposition 2 For every π ∈ [πs, s/n], there exists P ∈ Ps and q ∈ E(P ) such that
Π(P, q) = π and CS(P, q) = s− nπ.

The proof is constructive. For each surplus-profit combination identified in the state-
ment, an inverse demand P k

π,b/n ∈ Ps is explicitly constructed whose equilibrium b/n achieves

them. Note that since the equilibrium is b/n, there is no deadweight loss and CS(P k
π,b/n) +

Π(P k
π,b/n) = s.

Proof. We focus on showing that for each s ∈ (0, nπ̄] and π ∈ (πs, s/n] there exists (unique)
k0(s, π) such that FB(P k0

π,b/n) = s and therefore P k0

π,b/n ∈ Ps. The proof is concluded by noting

that for equilibria b/n of P k0

π,b/n, consumer surplus is equal to FB(P k0

π,b/n)−nΠ(P k0

π,b/n, b/n) =
s− nπ.

To show existence of k0(s, π), fix s and observe first that P
π/(u−c)+(n−1)b/n
π,b/n = P(π,b/n) =

Pπ. Then note that because π > πs we must have FB(Pπ) > FB(Pπs) = s. Finally note
that FB(P b

π,b/n) = nπ ≤ s because π ≤ s/n. Since FB(P k
π,b/n) is continuous and strictly
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Figure 4: Example of a demands P k
π,q for b = u = 1 and c = 0
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decreasing in k in the specified parameter space, we reach our conclusion by the intermediate
value theorem.

The result shows, roughly speaking, that there need not be an efficiency-equality trade-
off when the number of firms is sufficiently large. In particular, as long as each firm is guar-
anteed πs, any division of the first best surplus between consumers and producers is attained
by some demand function without producing dead-weight loss, regardless of the number of
firms in the market. Furthermore, note that when the number of firms is sufficiently large,
n > 1/(1− s), then πs = 0 and so any surplus-profit combination that achieves the first best
is attainable.

To complete our characterization, the next results determine, for each feasible (π, s),
the minimum level of consumer surplus that can be achieved in the equilibrium of some
demand in Ps, and also establish that all intermediate levels of consumer surplus between
the maximum and the minimum can be achieved. Before proceeding, we need to introduce
further notation.

Definition 2 Let πs ∈ [πs, s/n] be the solution to FB(P(πs,q(πs))) = s.11

To see that πs ≥ πs exists, note first that FB(P(πs,b/n)) = s and therefore FB(P(πs,q)) ≤
s, since by Lemma 2 we have P(πs,q) ≤ P(πs,b/n) and P(πs,b/n) ≥ c. Second, note that

11It is worth emphasizing that πs may but need not be equal to πs and that q(π) was defined just before
Lemma 1.
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FB(P(s/n,q)) ≥ s as profit under P(s/n,q) is s/n and FB(P(s/n,q)) ≥ ns/n = s. Finally,

observe that uniqueness follows by the strict monotonicity of FB(P(πs,q)) in π.12

To complete the analysis we now scan over profit levels in [πs, s/n]. We consider
two cases. First, we look at profit levels in [πs, s/n] (Proposition 3) and, second, we look
at profit levels in [πs, π

s] (Proposition 4). Before proceeding we find useful to define the
deadweight loss generated by an equilibrium q of some demand function P as DWL(P, q) =
FB(P, q) − CS(P, q) − Π(P, q) and to state some of its properties where the demand is of
the type P k

π,q.

Lemma 6 DWL(P k
π,q, q) is continuous and strictly decreasing in q and independent of k.

Proof. Since k < nq for q ∈ [q, b/n] and P k
π,q(x) = P(π,q)(x) for x ≥ nq ≥ π/(u−c)+(n−1)q,

we haveDWL(P k
π,q, q) =

∫ b
nq

(P k
π,q(x)−c)dx =

∫ b
nq

(Pπ,q(x)−c)dx = π [− log(q) + log(b− (n− 1)q)] .
See also figure 4 for a geometric intuition of the last part of the statement.

Proposition 3 For every s ∈ (0, nπ̄], π ∈ [πs, s/n], and w ∈ [0, s− nπ] there exists P ∈ Ps
and q ∈ E(P ) such that Π(P, q) = π and CS(P, q) = w.13

The proposition shows that for given s and profit level π above πs, any feasible com-
bination of consumer surplus and deadweight loss is achievable. The proof is, again, con-
structive. First, it is showed that zero consumer surplus can be achieved in equilibrium
when π ∈ [πs, s/n] using some demand P nq

π,q for some q. Note that this demand induces zero
consumer surplus as illustrated in figure 5, where the equilibrium quantity is indicated with
the black dot, the profit is the blue shaded area while the dead-weight loss (DWL) is the
gray shaded area. Then it is showed that intermediate levels of consumer surplus are also
achievable by demand functions in Ps.

Proof. As a first step, for each s ∈ (0, (u− c)b] and π ∈ [πs, s/n], we determine q such that
FB(P nq

π,q) = s. Clearly, if such q exists, then in the equilibrium q of this demand function
consumer surplus is zero. In fact, it is immediate to verify that CS(P nq

π,q, q) = 0 because P nq
π,q

is constant between 0 and the equilibrium total quantity nq (see Figure 5).

Hence, we show that for each s and π in the range identified by the statement, there
exists q(π) ≤ q ≤ b/n and demand P nq

π,q such that FB(P nq
π,q) = s. To see this, observe

that P
nq
π,q = P(π,q) as π/(u − c) + (n − 1)q = nq since q = π/(u − c). Then note that

FB(P(π,q)) ≥ FB(P(πs,q)) = s, where the inequality follows from Lemma 2 observing that
π ≥ πs and q(π) ≥ q(πs), while the equality follows from the definition of πs. Second,

consider that FB(P b
π,b/n) = nπ ≤ s because P b

π,b/n(Q) = P(π,b/n)(b) = nπ/b+ c for Q ∈ [0, b]

and π ≤ s/n. The result that such a q exists, call it q0(π, s), follows from the intermediate
value theorem by varying q in FB(P nq

π,q) between q and b.

12For b = u = 1 and c = 0 we have πs = s
(n−1)s−W−1(−se(n−1)s−n)

for s ≥ n−1
n .

13This is a complete characterization as consumer surplus can only be in [0, s − nπ] if profit is π and
first-best is s.
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Figure 5: Example of a demands P nq
π,q for b = u = 1 and c = 0
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To conclude the proof, we now show that, for π ∈ [πs, s/n], all intermediate levels of
consumer surplus between 0 and s − nπ can be achieved by some demand P k

π,q ∈ Ps. As
a preliminary step observe two facts: (i) DWL(Pπ,q0(π,s), q

0(π, s)) = s − nπ because by the

first part of this proposition DWL(P
nq0(π,s)

π,q0(π,s), q
0(π, s)) = s − n but deadweight loss of P k

q

does not depend on k (see Lemma 6); (ii) DWL(Pπ,b/n, b/n) = 0 by definition. Then, since
DWL(Pπ,q, q) is continuous and decreasing in q (see 6), then for any x ∈ [0, s − nπ] there
exists q̂ such that DWL(Pπ,q̂, q̂) = x. Then, since DWL(P k

π,q, q) does not depend on k (see
Lemma 6) and since for any P we have DWL(P, q) = FB(P )−CS(P, q)−nΠ(P, q), we can
establish our result if for all q ∈ [q0(π, s), b/n] we find kq such that FB(P kq

π,q, q) = s. Existence
of kq (where dependence on s and π is omitted to simplify notation) is demonstrated in the
remainder of the proof.

To see that for all q ≥ q0(π, s) there exists kq such that nq ≥ kq ≥ nq0(π, s) and
FB(P kq

π,q) = s we can use again the intermediate value theorem after observing the fol-

lowing two things. First, FB(P
nq0(π,s)

π,q0(π,s)) = s ≤ FB(P
nq0(π,s)
π,q ), for q ≥ q0(π, s), because,

for given k, by Lemma 2 P k
π,q ≥ P k

π,q0 for all q ≥ q0(π, s). Second, that FB(P nq
π,q) ≤ s

for q ≥ q0(π, s) because FB(P nq
π,q) = nπ + DWL(P nq

π,q) ≤ nπ + DWL(P
nq0(π,s)

π,q0(π,s), q
0(π, s)) =

FB(P
nq0(π,s)

π,q0(π,s), q
0(π, s)) = s, where the inequality follows since we haveDWL(P nq

π,q) ≤ DWL(P
nq0(π,s)

π,q0(π,s), q
0(π, s))

due to DWL(P k
π,q) being independent of k and decreasing in q for given π (see Lemma 6).
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Observe that if n = 1, then πs = πs as P(πs,q) = P(πs,q′) for any π ≤ q ≤ b/n and so
FB(P(π,q)) = FB(P(πs,b/n)) = FB(Pπs). Hence, the above result completes the characteriza-
tion of the n = 1 monopoly case. In this specific case, for any given s and π ∈ [πs, s/n], all
surplus and deadweight loss combinations are achieved as different equilibria of the demand
Pπ. In particular, the highest consumer surplus s−nπ is achieved by the equilibrium b/n (see
Condorelli and Szentes (2020)) and the lowest, equal to 0, by q(π) = π/(u− c) (see Kremer
and Snyder (2018)), while all intermediate levels are achieved by equilibria where quantity
ranges from q(π) to b/n. The achievable set is a triangle characterized by the following three
(industry profit, consumer surplus) points: (nπs, s − nπs), (s, 0) and (nπs, 0). See the first
column of figure 6 for an illustration.

To achieve the goal of this section, we still need to characterize possible levels of
consumer surplus given π ∈ (πs, π

s]. A last piece of notation is needed for the next and last
result.

Definition 3 For π ∈ [πs, π
s], let q̂(π, s) solve FB(P(π,q̂(π,s))) = s.

Note that FB(P(πs,q)) = s. Hence, by Lemma 2, for π ≤ πs we have FB(P(π,q)) ≤ s given
that also q(π) ≤ q(πs). Then there must exist q̂(π, s) such that FB(P(π,q̂(π,s))) = s. This is
the case because FB(P(π,b/n)) = FB(Pπ) ≥ FB(Pπs) = s and FB(P(π,q)) is continuous and
increasing in q.

Proposition 4 For s ∈ (0, nπ̄] and π ∈ [πs, π
s], there exists P ∈ Ps and q ∈ E(P ) such that

Π(P, q) = π and CS(P, q) = w if and only if w ∈ [CS(P(π,q̂(π,s)), q̂(π, s)), s− nπ].

Proof. Assume by way of contradiction P ∈ Ps and an equilibrium q of P exists such that
Π(P, q) = π ∈ [πs, π

s] and CS(P, q) < CS(P(π,q̂(π,s)), q̂(π, s)).

There are three possibilities, either q < q̂(π, s) or q = q̂(π, s) or q > q̂(π, s). First,
suppose q < q̂(π, s) and note that since we must have P ≤ P(π,q) < P(π,q̂(π,s)), where the first
inequality follows by Lemma 3 and the second from Lemma 2. Recalling the definition of FB
at the beginning of this section we must have FB(P ) ≤ FB(P(π,q)) < FB(P(π,q̂(π,s))) = s,
which contradicts P ∈ Ps.

Second, if q = q̂(π, s) then P(π,q) = P(π,q̂(π,s)). Hence, either P = P(π,q̂(π,s)) and therefore
CS(P, q) = CS(P(π,q̂(π,s)), q̂(π, s)), a contradiction, or P < P(π,q̂(π,s)) in an interval with
positive mass which gives FB(P ) < FB(P(π,q̂(π,s))) = s, also a contradiction.

Third, suppose that q > q̂(π, s). Observe Lemma 3 implies P ≤ P(π,q) and therefore

DWL(P, q) =

∫ b̂(P )

nq

(P (x)−c)dx ≤
∫ b̂(P )

nq

(P(π,q)(x)−c)dx+

∫ b

b̂(P )

(P(π,q)(x)−c)dx = DWL(P(π,q), q),

where the second inequality follows because P ≤ P(π,q) and Pπ,q(Q) ≥ c for Q ∈ [b̂(P ), b].
Then, recall from Lemma 6 that DWL(P(π,x), x) is strictly decreasing in x and conclude
that, because q > q̂(π, s), we must have

DWL(P, q) ≤ DWL(P(π,q), q) ≤ DWL(P(π,q̂(π,s)), q̂(π, s)).
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To find a contradiction with the hypothesis that equilibrium q of P generates lower consumer
surplus it is then sufficient to observe that

CS(P(π,q̂(π,s)), q̂(π, s)) = s−nπ−DWL(P(π,q̂(π,s)), q̂(π, s)) ≤ s−nπ−DWL(P, q) = CS(P, q).

The proof that intermediate levels of consumer surplus can be attained is analogous to
the one presented in the previous proposition. In particular, DWL(P(π,q), q) is continuous,
strictly decreasing (by Lemma 6) and goes from s−nπ−CS(P(π,q̂(π,s)), q̂(π, s)) to 0 as x goes
from q̂(π, s) to b/n. Hence, because DWL(P k

π,q) = DWL(P(π,q), q) for any k (also by Lemma
6) and CS(P k

π,q, q) = s−nπ−DWL(P k
π,q, q) we can conclude the proof if, for all π ∈ [πs, π

s],
we can find kq such that FB(P k

π,q) = s for all q ∈ [q̂(π, s), b/n]. Details are omitted.

To summarize, figure 6 fixes the maximum valuation and the maximum demand to one
and the cost to zero and illustrates the achievable couples of industry profit and consumer
surplus for various levels of first-best surplus and number of firms in the market. Note that,
as expected, q̂(πs, s) = πs/(u− c) and therefore CS(P(πs,q̂(πs,s)), q̂(π

s, s)) = 0. On the other
hand q̂(πs, s) = b/n and therefore CS(P(πs,q̂(πs,s)), q̂(πs, s)) = CS(Pπs , b/n) = s− nπs. That
is, as long as πs > πs (see columns 2 and 3 of figure 6), there is a unique consumer surplus
level achievable at the minimal profit πs and the equilibrium is efficient (see columns 2 and
3 of figure 6).

As it can be inferred from figure 6, as the number of firms grows,then πs → 0 and
πs → s/n and, more importantly, the minimum level of achievable consumer surplus given π
increases toward s−nπ. This visual insight is confirmed by the following results, which shows
that as the number of firms gets large only the Pareto frontier remains in the achievable set.

Corollary 3

lim
n→∞

nπs = 0, lim
n→∞

nπs = s and lim
n→∞

CS(F(π,q̂(π,s)), q̂(π, s)) = s− nπ for all 0 ≤ π ≤ s/n.

This confirms conventional wisdom in the Cournot model that inefficiency (but not
necessarily profits) disappear as competition increases.
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Figure 6: Achievable (nΠ, CS) couples in Ps within blue lines, b = u = 1 and c = 0
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Appendix A

We show that if there exists an asymmetric Cournot equilibrium, then there also exists a
symmetric equilibrium where the total amount produced, and therefore industry profit, is
the same. We illustrate this for the case of two firms, but the argument extends easily to
multiple firms.

Suppose there exists equilibrium (q1, q2) with Q = q1 + q2. The following inequalities
hold:

q1[P (Q)− c] ≥ q′[P (q′ + q2)− c] ∀q′

q2[P (Q)− c] ≥ q′′[P (q′′ + q1)− c] ∀q′′.

Now substitute q′ = Q/2−q2+ q̂ and q′′ = Q/2−q1+ ˆ̂q. We can rewrite the above inequalities
as

q1[P (Q)− c] ≥ (Q/2− q2 + q̂)[P (Q/2 + q̂)− c] ∀q̂
q2[P (Q)− c] ≥ (Q/2− q1 + ˆ̂q)[P (Q/2 + ˆ̂q)− c] ∀ˆ̂q.

Summing up the two sets of inequalities we know the following must hold

Q[P (Q)− c] ≥ (Q/2− q2 + q̂)[P (Q/2 + q̂)− c] + (Q/2− q1 + ˆ̂q)[P (Q/2 + ˆ̂q)− c] ∀q̂, ˆ̂q.

Since the above must hold for all q̂, ˆ̂q, fix q̂ = ˆ̂q. The set of inequalities below must also hold

Q[P (Q)− c] ≥ (Q/2− q2 + q̂ +Q/2− q1 + q̂)[P (Q/2 + q̂)− c] ∀q̂.

Finally, noting that q1 + q2 = Q and dividing by two we get

Q/2[P (Q)− c] ≥ q̂[P (Q/2 + q̂)− c] ∀q̂

which implies that there exists a symmetric equilibrium where both firms produce quantity
Q/2.
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