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Abstract

A buyer with private value makes a take-it-or-leave-it offer to a seller with
private cost. Which trading outcomes are implementable if the seller can sign
observable and binding contracts ex ante with a third party that specify transfers
as a function of the price posted and whether trade occurs? We establish a
three-way equivalence: contract-implementable outcomes coincide with those
achievable if the seller commits ex ante to an observable cost-dependent price-
acceptance strategy, which are outcomes implementable with direct bilateral
trading mechanisms subject to ex post monotonicity of the allocation in the
seller’s cost, and buyer’s interim incentive and participation constraints. An
upstream firm that charges royalties to a seller facing a monopsonist buyer can
implement ex post efficiency, but also turn a buyer monopsony into a seller
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1 Introduction

Contracts with third parties are a recognised source of strategic commitment (Schelling,
1960). Yet, little is known about how they expand the set of feasible outcomes in
canonical trading environments with informational frictions. We analyse ex ante vertical
contracts in a model of bilateral trade with two-sided private information. Before a
price-posting buyer makes an offer, a seller signs an observable, binding contract with a
third party. We fully characterise the downstream outcomes these contracts can induce,
showing that for the seller they are are as effective as committing to an acceptance
strategy. At one end of the Pareto frontier, royalty schemes can turn buyer monopsony
into seller monopoly; at the other, they can restore ex post efficiency, allocating all
surplus to the buyer.

Consider a private-value buyer purchasing a good from a seller with privately known
costs. The ex ante optimal mechanism for the buyer is monopsony pricing, i.e., making
a take-it-or-leave-it offer. Suppose that, before types are realised and prices posted, the
seller signs a public, non-renegotiable contract with the third party (e.g., the lincensor
of a technology, or a platform providing market access). This contract specifies a
monetary transfer contingent on the observable terms of trade, specifically the price
offered by the buyer and whether the transaction occurs. Our goal is to characterise
all contract-implementable outcomes: pairs of functions from types to allocation and
buyer-to-seller payment that can arise in the buyer’s monopoly pricing game under
some agreed ex ante contract.

We prove a three-way equivalence (Theorem 1). A trade-contingent royalty schedule
specifying price-dependent payments with a sale-independent fixed fee — to which we
show we can restrict attention (Lemma 2) — can contract-implement any equilibrium
outcome that arises when the seller commits ex ante to an observable, monotone,
cost-based acceptance strategy, before types are realised and the price is posted. In
turn, this is the set of outcomes implementable by a direct bilateral-trading mechanism,
as in Myerson and Satterthwaite (1983), with payments in posted-price form (i.e., the
ex post transfer is proportional to the ex post allocation, with a proportionality factor
that depends only on the buyer’s value and uniquely pins down the resulting transfer
given cost), such that the buyer’s interim incentive compatibility and participation
constraints hold, and the allocation rule is ex post non-increasing in the seller’s cost.

We leverage Theorem 1 to characterise the buyer-seller ex ante Pareto frontier within
contract-implementable outcomes, assuming ex ante that the budget between the seller
and the third party is balanced and that neither sustain a loss (Theorem 2). At one
extreme, there is a contract that neutralises the buyer’s market power, allowing the
seller to obtain an ex ante profit equal to that achievable by posting prices. Thus, a
royalty scheme can turn a monopsony of the buyer into a monopoly of the seller. At
the other, the buyer-preferred contract induces ex post efficient trade and yields the
first-best surplus to the buyer, leaving the seller and third party at their reservation
payoffs. The Myerson and Satterthwaite (1983) impossibility result is sidestepped as
the contract replaces the seller’s interim participation constraint with an ex ante one.

These two results are intuitive if asymmetric information is one-sided (Corollary 2.2).
Suppose, for instance, that the seller’s cost is public. Efficient trade is feasible without
a contract because the buyer offers to pay the known cost when their value is above
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it. Conversely, the seller becomes a monopolist by signing a resale-price-maintenance
agreement which imposes prohibitive liquidated damages should the seller accept any
price lower than the monopoly price associated with that cost. Facing such contractual
commitment by the seller, the buyer offers the monopoly price whenever their value is
higher.

However, consider the seller-optimal outcome when both cost and valuation are
private. Then, different types have different ideal prices. For each cost c, the optimal
posted price for a monopolist seller is equal to ψ−1(c), where ψ is the buyer’s virtual
valuation (Myerson, 1981). Hence, because c is unknown ex ante and unobserved by
the buyer, a contract that forces all of the buyer’s types to offer a unique price is
suboptimal.

Instead, the seller-optimal contract-implementable outcome is achieved via a royalty
scheme that induces the buyer to self-select into the desired pricing strategy. For any
monotone buyer’s pricing strategy, pB(v), define royalty payments

k(p) = p− ψ(p−1
B (p)).

This royalty schedule ensures that the seller accepts exactly when its cost c is below the
virtual valuation of the buyer type who would offer p, i.e., when c ≤ p−k(p) = ψ(p−1

B (p)).
Thus, k implements the seller-optimal allocation of the object.

We prove the result by establishing the existence of a monotone and incentive
compatible pB. Then, the Payoff Equivalence Theorem (Myerson, 1981) implies the
equilibrium offer of a buyer is the expected payment conditional on trade that they
expect to make in the seller’s monopoly mechanism. Equivalently, it is the equilibrium
bid of a single bidder in a first-price auction with random reserve price, pB(ψ−1(c)).

The problem above can also be viewed through the lens of non-linear pricing (Mussa
and Rosen, 1978). For given k, the buyer’s choice of price p selects a trade probability
q = G(p − k(p)), where G is the CDF of cost. Implementing a higher q requires
procuring from progressively higher-cost sellers, which generates a convex cost. Thus,
royalties act as a screening instrument that reshapes the buyer’s effective quality–price
menu. As a consequence, the seller-optimal contract can be interpreted as solving a
Mussa–Rosen-type problem in the one-dimensional allocation variable q.

The royalty contract that implements the seller-optimal outcome normally involves
both positive and negative payments. Higher cost seller are subsidised to accept prices
they would not otherwise, and lower cost ones are deterred from accepting too low
prices. However, we show on average the royalty paid is zero. Consequently, there is
no need to use a fixed fee for the third-party to break-even. Although, a profit-driven
third party who had full bargaining power against the seller, for example a licensor of
an essential technology, would choose a fixed fee to fully extract the monopoly profit.

Conversely, the buyer-optimal outcome is contract-implemented through a royalty
scheme which usually involves only negative payments. In this case, the optimal royalty
implements an ex post efficient outcome. Because the seller observes the price before
making a choice, their decision must be optimal ex post. It follows from Green and
Laffont (1977) that the seller must be made a residual claimant over the entire surplus.
To do so, the royalty is set at

k(p) = p− p−1
B (p),
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given a buyer’s monotone pricing strategy pB(v). As a result, the seller accepts any
offer pB(v) whenever c ≤ p−1

B (pB(v)) = v. Because pB(v) ≤ v, the royalty paid is always
negative and must be recouped by a breaking-even third-party via a fixed fee that
complements the royalty schedule. Meanwhile, the seller also breaks even, because the
buyer offers a price equal to the expected cost of production conditional on a sale,

pB(v) = Ec[c | c < v].

Normalised by the probability that the offer is accepted, this payment is the expected
externality the buyer imposes on the seller. Thus, it is the payment the buyer would
make in the Expected Externality Mechanism of d’Aspremont and Gérard-Varet (1979)
and, therefore, is incentive compatible given the resulting allocation is ex post efficient.

Clearly, allowing unrestricted third-party contracting increases total welfare if the
buyer-optimal contract is signed. However, turning a monopoly of the buyer into one of
the seller has, in general, ambiguous effects on total welfare. Hence, we do not provide a
clearcut welfare argument in favour or against the countervailing use of ex ante royalty
contracts. Nonetheless, we are able to show that if the seller’s monopoly generates
higher welfare than the buyer’s monopsony, the total welfare effect of allowing ex ante
contracting is positive no matter which point in the frontier is chosen (Proposition 1).
Seller-optimal royalties are the welfare worst case among Pareto optimal contracts.

Implications Since they do not play any other role in our model, we isolate a novel
rationale for royalty schemes as a commitment device to countervail the power of
a strong buyer. The applied conclusion of our analysis is that such contracts are
extremely powerful in shaping downstream behaviour. In industrial organisation, a
large literature examines two-part tariffs as means to leverage market power from a
monopolised upstream market to a competitive one downstream (e.g., see Rey and
Tirole (2007)). We demonstrate monopolisation is possible even in the presence of
buying power and despite informational frictions between the upstream firm and the
seller. Thus, we mitigate claims that buyer power will temper anticompetitive behaviour
by an upstream monopolist in the supply chain (e.g., see Dobson and Waterson (1997)).1

We show that negative royalties are an essential feature of Pareto optimal contracts,
one antitrust authorities may want to scrutinise further when evaluating vertical ar-
rangements. While we are not aware of a documented case where they have been
used to countervail market power, negative royalties are often in place. For exam-
ple, pharmaceutical companies often contract with distributors or licence to other
manufacturers, who then go on selling to large pharmacy chains, national purchasing
agencies or consortia of hospitals. Such distribution or licensing agreements may include
price-maintenance clauses with large liquidated damages and involve rebates that turn
royalties from payments into subsidies for larger sales.

A contract that gives all surplus to the buyer won’t be entered willingly into by a
seller and a self-interested third party. Hence, it is less likely to be of practical relevance.
However, it is conceivable an efficiency-seeking government agency that is unable to
regulate the downstream pricing of a seller may wish to license it in a way that further

1Arguably, the strong buyer might attempt to sign a contract first, initiating a commitment race.
While the observation has merit in theory, we take the view that contracts between elements of a
supply chain are more credible and observable than those signed with outside brokers.
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raises surplus in a final market, even if the market is already competitive because of
buying power. As a possible example, observe that U.S. offshore oil and gas leasing
combines a high upfront bonus bid for market access with ongoing royalties that can be
partially suspended or reduced through statutory royalty-relief programs. Interpreted
through our lens, the bonus bid plays the role of the fixed fee, while the relief functions
like an output-contingent rebate that encourages higher production even when the
downstream operator has substantial bargaining power.

To bring our insights to bear on the antitrust of vertical contracts, it is useful to
emphasise load bearing assumptions. We devote the concluding Section 5 of the paper
to this. However, let us mention here two crucial assumptions: contract observability
and non-renegotiability. Analogously to the argument made by Hart and Tirole (1990)
and O’Brien and Shaffer (1992) for the case of multiple price-posting sellers, if the
contract is secret or can be renegotiated after the buyer has posted the price, the third
party and the seller would agree on the ex post optimal rule of accepting the buyer’s
offer if above cost. Thus, any unobserved contract must be assumed to impose no
royalties.

Notwithstanding, firms and governments have many opportunities to make the
contracts they signed public and hard to renegotiate. Contracts are often announced
to the press and details disclosed in public filings. A prominent example is Apple’s
2010 agency agreements with major book publishers in the US, whose public terms
were designed to credibly shift pricing power away from Amazon with its $9.99 per
book policy and formed the core of the ensuing antitrust litigation. The shift to the
agency model was announced in January 2010 alongside the launch of the iBookstore.
Major news outlets (The New York Times, Wall Street Journal) explicitly reported on
the key terms: publishers would set retail prices (between $12.99 and $14.99 for new
releases), and Apple would take a 30% commission.

Related Literature A large body of work explores the insight that contracts al-
low commitment.2 Our setting — with observable, binding contracts preceding an
interaction with asymmetric information — bridges two strands of this literature.

The first is optimal delegation, where a principal grants public decision-making
authority to an agent. While early work focused on oligopoly (Vickers, 1985; Fershtman,
Judd, and Kalai, 1991), recent literature endows the agent with private information
and emphasises balancing flexibility against control (Alonso and Matouschek, 2008;
Armstrong and Vickers, 2010). Closest to our paper is Thereze and Udayan (2025),
who characterise the set of outcomes implementable through delegation. In a model
of bilateral trade, they show that ex post efficient trade is often unattainable when
the principal is restricted to allocating decision rights. We build on this framework by
embedding delegation in a richer contractual environment. The third-party contract
governs, via royalties, the degree of discretion a privately informed seller has when
negotiating with a buyer. By allowing side payments in addition to the allocation of
authority, our contracts overcome the impossibility in Thereze and Udayan (2025) and
restore full efficiency.

The second strand of literature is contracting with externalities, most notably Aghion
2Some recent work has focused on commitment in itself: Bade, Haeringer, and Renou (2009) and

Bizzotto, Hinnosaar, and Vigier (2022).
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and Bolton (1987) and Segal (1999). Aghion and Bolton show how a seller with known
cost and buyer can sign an exclusivity contract to extract rent from a third-party
entrant with private cost. We analyse the structural inverse: a seller and a third
party signing a contract to extract rent from the buyer. The presence of two-sided
asymmetric information flips the welfare implications: while Aghion and Bolton find
that exclusivity reduces total surplus, we show that seller’s commitment can improve
efficiency. Segal shows that a principal contracting individually with multiple agents
can obtain an ex-post efficient outcome in the presence of multilateral externalities
if the contract of each agent can condition on all messages. We also show ex-post
efficiency is attainable, but in contrast to Segal the principal in our framework may
only write contracts with one of the two agents.

We align with Loertscher and Marx (2022) in interpreting the canonical mechanism-
design approach to trade as one in which the buyer possesses substantial bargaining
power. Extending this perspective to bilateral trade with two-sided asymmetric infor-
mation, we show that observable, non-renegotiable vertical contracts with a third party
can countervail buyer power by operating as an ex ante commitment device. While Lo-
ertscher and Marx (2022) and much of the subsequent work emphasise the implications
of horizontal mergers, our results imply vertical integration can be counterproductive
because it eliminates the commitment value inherent in arm’s-length contracting.

Other related work on buyer power and vertical restraints analyses how contractual
arrangements affect negotiated outcomes through outside options and exclusion incen-
tives (e.g., Ho and Lee, 2019; Chambolle and Molina, 2023). We complement these
approaches by providing a complete characterisation of the outcomes implementable
via third-party royalty schedules, and by mapping the ex ante Pareto frontier under
asymmetric information, thereby delineating the scope for contracting to countervail
buyer power without restricting attention to particular contractual forms.

We provide a mechanism-design characterisation of observable, non-renegotiable
third-party vertical contracting in monopoly pricing. Theorem 1 can be read as a
type of revelation principle: the set of outcomes implementable via royalty schedules
coincides with the set implementable by a direct bilateral-trade mechanism under specific
constraints. A closely related insight — arriving via information design rather than side
contracting — is in Ichihashi and Smolin (2023), where a buyer-side recommendation
rule acts as a commitment device and the induced payoff frontier can be characterised
using standard screening tools.

Our results also clarify why ex post efficiency becomes attainable once the seller’s
interim participation constraint is effectively replaced by an ex ante one: the third
party plays the role of a budget breaker, a classic device for restoring efficiency when
bilateral budget-balance or renegotiation constraints would otherwise bind (e.g., see
d’Aspremont and Gérard-Varet (1979) and Baliga and Sjöström (2009)). Related
dynamic environments in which early contracting relaxes participation and incentive
constraints include Giovannoni and Hinnosaar (2024). Finally, from a more technical
viewpoint, the structure of our ex ante Pareto frontier is closely aligned with the geom-
etry of one-dimensional screening and non-linear pricing in regulation and monopoly
pricing (Baron and Myerson, 1982; Mussa and Rosen, 1978).
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2 Model

A seller, S, and a buyer, B, bargain over the sale of a single object. The buyer makes
a take-it-or-leave-it price offer, p ∈ R, to S. The value of the object to B, denoted
v, and the marginal cost of production of S, denoted c, are private information of B
and S. We assume v and c are drawn from CDFs F and G with Supp(F ) ⊆ [v, v]
and Supp(G) ⊆ [c, c], respectively. We will say that F (or G) is regular if it admits a
density f (or g) which is everywhere positive on [v, v] ([c, c]) and the hazard rate f

1−F
(or reciprocal reverse hazard rate G

g
) is increasing.

We wish to characterise the set of outcomes that can arise in the monopoly pricing
game above when, prior to learning its cost and bargaining, S has signed an observable
and irrevocable contract with a third party. The contract specifies what S pays to the
third party as a function of the actions taken during the bargaining game and possibly
the realisation of some public random variable, ω ∼ U [0, 1]. Define any such contract
as a measurable and uniformly bounded function [0, 1] × {0, 1} × R ∋ (ω, x, p) 7→
m(ω, x, p) ∈ R where x ∈ {0, 1} indicates whether trade has taken place (x = 1) or not
(x = 0) and p ∈ R is the price offered by B.

Assuming m is in force and the state is (ω, v, c), ex post payoffs for the buyer and
the seller are:

u(x, p ; v) := x(v − p)
π(x, p,m ; c, ω) := x(p− c)−m(ω, x, p).

An important role will be played by the profit of the seller gross of the payment to the
third party, which we will refer to as S’s trade surplus:

π̂(x, p ; c, ω) := π(x, p,m ; c, ω) +m(ω, x, p) = x(p− c).

Figure 1 illustrates the timing of the model.

Figure 1: Timeline

Contract
comes into force

Valuation and cost
realised

B posts price

Contract format realised
and observed by S

S accepts
or rejects trade

Time

We assume the uncertainty of the contract is resolved after B posts its price, but before
S decides whether to accept trade or not. Making the contract a random function
of the price expands implementation possibilities in a useful way, but only as long as
uncertainty is resolved prior to acceptance. However, our key results specialise to the
case of a deterministic contracts which we discuss following Theorem 1.

Given a contract is in force, a strategy for S is price-acceptance mapping [0, 1] ×
[c, c] × R ∋ (ω, c, p) 7→ a(ω, c, p) ∈ [0, 1], while B’s strategy is a price mapping
[v, v] ∋ v 7→ p(v) ∈ R. A (Perfect Bayesian) equilibrium under contract m is a profile
of strategies (p, a) such that play is sequentially rational. Let us denote with E(m) the
set of equilibria of the bargaining game arising given contract m.
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3 A Three-Way Equivalence

An outcome in the bilateral trading game is a pair of functions

[c, c]× [v, v] ∋ (c, v) 7→ (q(c, v), t(c, v)) ∈ [0, 1]× R

which specifies for each profile of types the probability the object is traded and
the expected payment made from the buyer to the seller. Following Myerson and
Satterthwaite (1983), each outcome corresponds with a direct mechanism, whereby seller
and buyer simultaneously report their types and the mechanism designer implements
(q, t). A profile of strategies (p, a) induces outcome (q, t) if

q(c, v) = Eω[a(ω, c, p(v))]; (1)
t(c, v) = p(v) · Eω[a(ω, c, p(v))]. (2)

We look for outcomes that arise as equilibrium for some contract between the
third-party and the seller. The following definition introduces the outcomes of interest.
Definition 1 An outcome (q, t) is contract-implementable if there exists contract m
and equilibrium (p, a) ∈ E(m) that induces (q, t).

We shall say that m contract-implements (q, t) with (ex ante) budget balance if there
exists (p, a) ∈ E(m) that induces (q, t) with no ex ante transfer of funds between the
seller and the third party, that is

Eω,v,c,x∼Bern(a(ω,c,p(v))[m(ω, x, p(v))] = 0.3

Since we assumed no budget constraints and because if (q, t) is contract-implemented
by m′, then it is also implemented by m′ + z for any fixed real valued z, we conclude
that any contract-implementable outcome can be implemented with budget balance.

The next Lemma identifies the set contract-implementable outcomes. Outcomes
associated with direct mechanisms in posted-price form that are incentive compatible
and interim individually rational for the buyer, and whose allocation rules exhibit ex
post monotonicity in cost can be contract implemented, and no more.
Lemma 1 Outcome (q, t) is contract-implementable if and only if:

1. For each v, q(c, v) is non-increasing in c;

2.
∫ c
c q(c, v)dG is non-decreasing in v ∈ [v, v];

3.
∫ c
c t(c, v)dG =

∫ c
c

[
vq(c, v)− vq(c, v) + t(c, v)−

∫ v
v q(c, x)dx

]
dG;

4.
∫ c
c [q(c, v)v − t(c, v)] dG ≥ 0;

5. t(c, v) = q(c, v)d(v) for some d : [v, v]→ R where (q, t) factors through d.4
3A random variable X has distribution Bern(s), parametrised by s ∈ [0, 1], if X takes values in

{0, 1} and X = 1 with probability s.
4Outcome (q, t) factors through d if for each c, v 7→ (q(c, v), t(c, v)) is constant over the fibres of

d: for any v, v′ ∈ [v, v], d(v) = d(v′) =⇒ (q(c, v), t(c, v)) = (q(c, v′), t(c, v′)) for all c ∈ [c, c]. Given
t(c, v) = d(v)q(c, v), if d(v) > 0 for all v then t factoring through d implies the outcome (q, t) also
factors.
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Conditions 2–4 are classic and ensure interim incentive compatibility and individual
rationality for the buyer.

Condition 5 ensures the transfers fit the posted price structure: if transfers satisfy
this condition we shall say they are in posted-price form. Formally, the ex post transfer
must be proportional to the ex post allocation. Moreover, the proportionality factor
must depend only on the buyer’s value and must pin down the resulting allocation and
transfer rule for any given cost. If two buyers types post the same price in the monopoly
pricing game, then the corresponding transfer in the mechanism must be the same and
can depend on cost only through the allocation. The condition does not restrict the ex
post allocation nor interim payoffs. For any allocation rule q satisfying Conditions 1
and 2, there exists ex post transfers satisfying Conditions 3 and 5, simultaneously.5

Condition 1 requires monotonicity of the ex post allocation rule in cost. This condition
is necessary for dominant strategy incentive compatibility on the seller side, which,
once the third-party payment is taken into account, is forced by the timing of the
monopoly pricing game. Moreover, it is sufficient for the existence of transfers t̃ such
that (q, t̃) is dominant strategy incentive compatible for seller. However, in general,
Lemma 1 does not imply t = t̃. Because the contract payments are ex-ante budget
balanced but need not be ex-post, the seller’s ex-post payoffs differ from those derived
directly from (q, t) and, instead, may be adjusted to coincide with those associated
with (q, t̃). Specifically, to implement outcome (q, t) contract payments are chosen
equal to t− t̃ giving the seller an effective transfer of t̃S := t− (t− t̃) = t̃.

Proof. Necessity: Suppose (q, t) is induced by (pm, am) ∈ E(m) for some contract m.
Because B posts their price before S makes their acceptance decision, the effective

transfer to seller, t̃S — defined as the transfer from the buyer minus the contract
payments — must be such that (q, t̃S) is dominant strategy incentive compatible for the
seller. By Green and Laffont (1977), this implies q(c, v) is non-increasing in c ∈ [c, c]
for each fixed v ∈ [v, v], giving Condition 1.

Because (pm, am) ∈ E(m) form an equilibrium and induce (q, t), the outcome must
be incentive compatible and individually rational for the buyer. Conditions 2, 3, and 4
then follow from Myerson (1981).

Finally by definition of (pm, am) inducing (q, t),

t(c, v) = Eω[pm(v) · am(ω, c, pm(v))]
= pm(v)Eω[am(ω, c, pm(v))] = pm(v)q(c, v).

Hence, we may take d(v) = pm(v). Since q(c, v) = Eω[a(ω, c, p(v))] depends on v solely
through pm(v), q(c, ·) is constant over the fibres of pm(v). Similarly, t is also constant
over pm-fibres. Consequently, (q, t) factors through d = pm, giving Condition 5.

Sufficiency: Suppose (q, t) satisfies the given conditions. We construct a contract m
with (pm, am) ∈ E(m) inducing (q, t).

5To simplify exposition, we assumed that the buyer never randomises over prices. All our analysis
goes through if the buyer strategy is defined as [v, v] ∋ v 7→ p(v) ∈ ∆(R). In that case, Condition 5
is replaced by the requirement that transfers be in mixed posted-price form: t(c, v) =

∫
ti(c, v)dτ =∫

di(v)qi(c, v)dτ for a collection of outcomes {(qi, ti)}i∈I with I an index set, qi(c, v) non-increasing
in c for each v, τ ∈ ∆(I) such that q =

∫
qidτ , for functions di : [v, v]→ R such that for all i, j ∈ I

di(v) = dj(v′) =⇒ qi(c, v) = qj(c, v′),∀c.
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By Condition 2, the set of buyer types which trade with probability zero is (up to a
null set) a possibly empty lower interval [v, ṽ) or [v, ṽ] for some ṽ ∈ [v, v] — without
loss, assume it is [v, ṽ). Define

pm(v) :=

v if v < ṽ,

d(v) if v ≥ ṽ

We now construct contract payments. Let m(ω, 1, p) = v, deterministically for any
p < ṽ — so as to dissuade S from trading with types v < ṽ. Additionally, fix contract
payments such that m(ω, 0, p) = 0 for all p ∈ R and ω ∈ [0, 1].

By Condition 5, d(v) = d(v′) =⇒ q(c, v) = q(c, v′) for all c. Therefore, we may
define a function β(c, p) with β(c, p) = q(c, v) whenever p = d(v) and β(c, p) = 0 if p is
not in the image of d. Since by Condition 1 q(c, v) is non-increasing in cost for each
v, we may consider 1 − q(·, v) as a CDF over costs, possibly after adding a dummy
cost value above c so the CDF reaches full probability mass. Let H(c, p) = 1− β(c, p).
Then H̃(ω, p) := inf{c ∈ [c, c] | H(c, p) ≥ 1− ω} satisfies Pω(H̃(ω, p) ≥ c) = β(c, p).

Define m(ω, 1, p) = p− H̃(ω, p) whenever p ≥ ṽ. The constructed contract is

m(ω, x, p) :=

xv if p < ṽ

x(p− H̃(ω, p)) if p ≥ ṽ

By sequential rationality, seller accepts if and only if

p− c−m(ω, 1, p) ≥ −m(ω, 0, p) ⇐⇒ H̃(ω, p) = p−m(ω, 1, p) ≥ c

Define the pure acceptance strategy

am(ω, c, p) :=

0 if p < ṽ

1{H̃(ω, p) ≥ c} if p ≥ ṽ

By construction, Eω[am(ω, c, pm(v))] = Pω(H̃(ω, d(v)) ≥ c) = β(c, d(v)) = q(c, v).
Therefore,

Eω[am(ω, c, pm(v))] = Pω(H̃(ω, pm(v)) ≥ c) = q(c, v)
Eω[pm(v) · am(ω, c, pm(v))] = pm(v)Eω[am(ω, c, pm(v))] = d(v)q(c, v) = t(c, v)

Since am is sequentially rational by construction, Conditions 2, 3, and 4 imply (pm, am) ∈
E(m), so that (pm, am) induces (q, t).

Next, we show that the set of contract-implementable outcomes is essentially as
large as the set of outcomes a seller can implement by committing to an interim
price-acceptance strategy ex ante, i.e., before it learns cost.

To make this equivalence formal, let’s envision a commitment version of our model,
in which the contract with the third party is replaced by a (measurable) commitment
strategy for S, denoted α(c, p) ∈ [0, 1], specifying the probability with which type c
should accept price p. We say α is monotone if for c > c′, α(c, p) ≤ α(c′, p). As with
a contract, commitment strategies induce equilibrium outcomes. In an equilibrium,
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the buyer with value v posts a price in P (v, α) := arg maxp Ec[α(c, p)](v − p) and the
seller accepts according to α(c, p). Let P(α) := {pα : [v, v]→ R | ∀v ∈ [v, v], pα(v) ∈
P (v, α)} be the collection of optimal price schedules given commitment strategy α. We
say commitment strategy α and pα ∈ P(α) induce outcome (q, t) if

q(c, v) = α(c, pα(v))
t(c, v) = pα(v)α(c, pα(v))

We now define outcomes implementable by a monotone commitment strategy.
Definition 2 Outcome (q, t) is commitment-implementable if there exists monotone
commitment strategy α and pα ∈ P(α) that induces (q, t).

We are ready to state the main result of the paper. It establishes a mutual equivalence
in terms of implementable outcomes between ex ante contracting of the seller with a
third party, the seller’s commitment to an interim acceptance strategy at the ex ante
stage, and the power to design the allocation mechanism under constraints.
Theorem 1 The following statements are equivalent:

(i) (q, t) is contract implementable;

(ii) (q, t) is commitment implementable;

(iii) (q, t) is a direct mechanism with ex post transfers in posted-price form and
allocation monotone in cost, satisfying interim incentive compatibility and interim
individual rationality for the buyer.

A commitment strategy induces a contract-implementable outcome if and only if it is
monotone. Hence, the set of outcomes implementable via commitment is strictly larger
than the set of contract-implementable ones. However, monotonicity is a weak condition.
If acceptance is non-monotone, then there exists a monotone strategy inducing the
same distribution of prices and trade, hence generating the same revenue for the seller
and buyer, yet weakly lower production cost.

Theorem 1 naturally extends to the case where the contract m is required to be
deterministic. In this case, Conditions 1 and 2 in Lemma 1 are replaced with q(c, v) =
1{ϕ(v) ≥ c} for some non-decreasing ϕ; a commitment strategy is defined as α(c, p) ∈
{0, 1}; and the direct mechanism described in (iii) above has an ex post allocation rule
that takes a cut-off form.

Proof. Lemma 1 proved (i) ⇐⇒ (iii). That (i) =⇒ (ii) is immediate by setting
commitment strategy α(·, ·) = Eω[a(ω, ·, ·)]. We now prove (i) ⇐= (ii).

Suppose (q, t) is commitment implementable. Then there exists a monotone commit-
ment strategy α and pα ∈ P(α) inducing (q, t). By definition, q(c, v) = α(c, pα(v)) and
t(c, v) = pα(v)α(c, pα(v)). We show outcome (q, t) satisfies the conditions of Lemma 1.

Because q(c, v) = α(c, pα(v)), monotonicity of the commitment strategy implies
Condition 1. Conditions 2, 3, and 4 follow from the fact pα ∈ P(α) is optimally chosen
by B. Additionally, because B posts prices, the transfers must satisfy Condition 5.6

6If buyer is permitted to randomise over prices, the proof is analogous given the mixed posted-price
form definition given in Footnote 5.
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In a contract (or commitment) implementable outcome, the seller may not receive
enough money from the buyer to pay the cost of production. For example, a contract
might commit the seller to accept any offer above the lowest possible cost. If we wish
the seller to be paid enough to recover production costs then outcome (q, t) must give
a non-negative ex ante trade-surplus to the seller:

Π̂(q, t) := Ev,c[t(c, v)− q(c, v)c] =
∫ v

v

∫ c

c
t(c, v)− q(c, v)c dGdF ≥ 0. (S-IR)

Together with 1–5 from Lemma 1, (S-IR) is necessary and sufficient for an outcome
to be contract-implementable with balanced budget and the seller not sustaining a
loss, or as we shall say, to be contract-implementable without production subsidy. The
condition is obviously necessary. If the outcome fails it, then either the seller or the
third-party must be covering production cost in excess of revenues. It is sufficient
because, as we argued, any outcome can be implemented by a budget-balanced contract
and (S-IR) ensures that the earnings accrued from the buyer cover the cost of the seller
when the net transfer to the third party is zero.

If we wish to specialise Theorem 1 to characterise contract-implementable outcomes
without production subsidies in (i), then the conditions of Lemma 1 will have to include
(S-IR) and the mechanism design formulation in (iii) will have to specify an ex ante
participation constraint for the seller. Additionally, the definition of commitment-
implementable in (ii) will need to restrict attention to monotone commitment strategies
that are ex ante profitable.

Motivated by practical relevance, we close this section by showing it is without loss
to restrict attention to contracts of the form m(ω, x, p) = xk(ω, p) + T , where k is a
price-dependent royalty paid only if trade occurs and whose realisation is observed
by S, and T is a fixed fee paid irrespective of trade. Define this class of contracts as
two-part royalty.
Lemma 2 For any (q, t) contract-implementable by contract m and (p, a) ∈ E(m),
there exists two-part royalty contract m′ and equilibrium (p′, a′) ∈ E(m′) inducing (q, t)
that generates the same expected transfer to the third party.

Because m(ω, x, p) = xm(ω, 1, p) + (1 − x)m(ω, 0, p) = x(m(ω, 1, p) −m(ω, 0, p)) +
m(ω, 0, p), any contract can be rewritten as a two-part one, where a random price-
dependent fee, m(ω, 0, p), is paid irrespective of whether trade occurs or not and
another, k(ω, p) = m(ω, 1, p)−m(ω, 0, p), is only paid if trade takes place. The proof
of Lemma 2 shows m(ω, 0, p) can be replaced with its expected value without affecting
trading behaviour nor the interim payment made by S to the third party. The key
is that a payment from S that is independent of whether trade takes place cannot
influence the price acceptance decision of S nor, as a result, the price offered by B.

4 Ex Ante Pareto Frontier

Having characterised contract-implementable outcomes, we now chart the ex ante
buyer-seller Pareto frontier within it. We focus our search on outcomes that satisfy
conditions 1–5 from Lemma 1 plus (S-IR). We insist on (S-IR) because in mapping
the frontier it is natural to ask that any contract entered between the third-party and
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S does not require an injection of external funds. We take trade-surplus, the sum of
seller’s profit and third-party’s revenue, as the relevant metric for seller’s welfare.7

Operationally, we identify outcomes that maximise the weighted sum of the ex ante
trade-surplus of S and the payoff of B for arbitrary weights (see Holmström and Myerson
(1983)). Thus, let γ ∈ [0, 1] be the Pareto weight on buyer surplus and 1− γ ∈ [0, 1]
be the weight on seller’s trade surplus. We shall say an outcome is γ−maximal if it
maximises the above γ-convex combination among the set of contractable-implementable
outcomes without production subsidy.

When F is regular, define the monotonically non-decreasing γ-virtual valuation as

ψB,γ(v) = v −max

0, 1− 2γ
1− γ

 · 1− F (v)
f(v) .

The main result of this section can be now stated.
Theorem 2 Assume F is regular. For γ ∈ [0, 1], the unique γ-maximal outcome is:

1. q∗
γ(c, v) = 1{c ≤ ψB,γ(v)};

2. t∗γ(c, v) = µγ(v) · 1{c ≤ ψB,γ(v)}, where

µγ(v) :=

Ec[ψ
−1
B,γ(c) | c ≤ ψB,γ(v)]8 if γ ≤ 1/2,

Ec[c | c ≤ v] if γ > 1/2

with E[x | ∅] = 0 is the expected payment of the v-buyer conditional on trade.9

The γ-maximal outcome is contract-implemented by a deterministic royalty contract

k∗
γ(p) :=

p− ψB,γ(µ−1
γ (p)) p ∈ µγ([v, v]),

v otherwise,

uniquely defined for p ∈ µγ([v, v]), together with any fixed fee T ∗
γ ∈ R.

In the γ-optimal outcome, exchange takes place whenever the γ−virtual valuation of
the buyer exceeds the seller’s cost. To achieve this, the royalty payment provides a
subsidy (or a surcharge) to the price µγ(v) posted in equilibrium by a value v buyer,
that makes just sellers with cost less than ψB,γ(v) accept the offer. The price posted by
the buyer can be understood as the equilibrium bid of a single bidder in a first-price
auction with a random reserve price set at µγ(ψ−1

B,γ(c)).
Intuitively, the third party contract shapes the pricing strategy of the buyer by altering

the distribution of the total cost that drives acceptance of the seller. Practically, it
does so using two tools. First, it commits the seller to only accept a limited set of

7Ex ante, trade surplus equals profit if implementation is with budget balance. We do not focus
on seller’s profit, because a fixed transfer between the seller and the third-party does not affect the
constraints of Lemma 1 nor (S-IR). Hence, for any achievable ex ante buyer payoff, any seller profit
level can be attained if we do not restrict such transfer.

8Since we make no support assumptions, for a monotone mapping [v, v] ∋ v 7→ ℓ(v) ∈ R, we
employ the generalised inverse mapping R ∋ x 7→ ℓ−1(x) = inf{v ∈ [v, v] | ℓ(v) > x} ∈ [v, v].

9To be precise, at γ = 1/2, the payment is not unique as also µ 1
2
− µ forms part of a γ-maximal

outcome for any µ ∈
[
0,Ec[max{0, v − c}]

]
.
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prices by prescribing unaffordable payments in case a price outside that set is accepted.
Second, it engages in screening of the buyer by offering an incentive compatible menu
of price-probability pairs.10

Example 1 (Uniform distributions) We characterise the ex ante Pareto frontier when
v ∼ U [0, 1] and c ∼ U [0, 1]. Define Γ = max{0, (1− 2γ)/(1− γ)}, so that ψB,γ(v) =
(1 + Γ)v − Γ. By Theorem 2, buyers with value v < Γ

1+Γ never trade in the γ-maximal
outcome. For v ≥ Γ

1+Γ , pγ(v) = µγ(v) = v
2 + Γ

2(1+Γ) . For p ∈ µγ([0, 1]) =
[

Γ
1+Γ ,

1+2Γ
2(1+Γ)

]
we have k∗

γ(p) = p− ψB,γ(µ−1
γ (p)) = 2Γ− (1 + 2Γ)p.

The royalty schedule k∗
γ is uniquely defined for prices offered on path and accepted

with some probability. The fixed fee, T ∗
γ , is unrestricted since it affects neither trade-

surplus nor behavior. However, in applications it is reasonable to bound T ∗
γ so that

neither the seller nor the third-party incur an expected loss individually, not just
jointly. At minimum T ∗

γ should balance the budget. At its maximum, the seller should
break-even. That is, −K∗

γ ≤ T ∗
γ ≤ Π̂(q∗

γ, t
∗
γ)−K∗

γ , where

K∗
γ := Ev,c

[
q∗
γ(c, v)k∗

γ(µγ(v))
]

is the expected royalty payment.
Let W e := Ev,c[1{v≥c}(v − c)] ≥ 0 be the maximum expected gain from trade, that is

the sum of ex ante buyer payoff and trade-surplus in the ex post efficient allocation.
The following is also worth noting about the optimal royalty schedule k∗

γ.
Corollary 2.1 (i) K∗

γ ∈ [−W e, 0]; (ii) If G is regular then k∗
γ(p) is strictly decreasing

over prices p ∈ µγ([v, v]); (iii) For 1/2 > γ > γ′ and p ∈ µγ([v, v]) ∩ µγ′([v, v]),
k∗
γ(p) < k∗

γ′(p); (iv) If G is regular and [c, c] ∩ ψB,γ([v, v]) has non-empty interior, then
k∗
γ(p) < 0 if and only if p ∈ (p̃, µγ(v)] for some p̃ < µγ(v).
Part (i) bounds the expected royalty payment across the Pareto frontier. As generally

W e > 0, achieving a γ−maximal outcome requires royalty payments that, on average
and without considering the fixed fee, transfer money to the seller. Part (ii) states
that if G is regular, then the optimal royalty is decreasing over prices which are posted
and accepted with strictly positive probability. Part (iii) shows that if γ′ rises to γ,
for any price posted on-path in both the γ- and γ′-maximal royalty schemes, royalties
are necessarily decreasing on that price. That is, the supplier is subsidised more for
accepting trade at each price offer. Part (iv) asserts that, with the exception of cases
where the supports of cost and value are too far apart, the optimal scheme involves both
positive and negative royalties. A positive payment dissuades the seller from accepting
lower price offers, while a negative one encourages acceptance of higher prices.

We conclude this section by specialising Theorem 2 to the case in which asymmetric
information is one sided, in the sense that either the valuation or the cost is known.
Corollary 2.2 Assume either F is degenerate on v ∈ [v, v] (known valuation) or G is
degenerate on c ∈ [c, c] (known cost) and F is regular. Then, the γ−maximal outcome

10Sellers with increasingly high marginal cost are called upon to serve additional demand, the cost
of providing higher probability of trade is convex. Hence, our optimal screening problem is isomorphic
to that in a generalised version of Mussa and Rosen (1978) accounting for the different Pareto weights.
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is contract-implemented by a deterministic royalty scheme

k∗
γ(p) =

v if p ̸= p∗
γ

−s∗
γ if p = p∗

γ.

where

(p∗
γ, s

∗
γ) =

(ψ−1
B,γ(c), 0) if known cost,

(v, 0)1{γ≤1/2} + (Ec[c | c ≤ v], v − Ec[c | c ≤ v])1{γ>1/2} if known value.11

When either cost or value is known, B is forced to choose between either offering p∗
γ

and trading with some probability or never trading. To do this, the implementing k∗
γ

demands the seller pay prohibitively high liquidated damages if it ever accepts trade
at any other price, and subsidises trade at p∗

γ by a payment of s∗
γ. Aside from the

case of known value and γ > 1/2, s∗
γ = 0, implying the observed ubiquity of non-zero

royalty schemes in Theorem 2 and Corollary 2.1 was an artefact of bilateral asymmetric
information rather than unilateral.

4.1 Seller- and Buyer-Optimal outcomes

Maximising Seller’s surplus. The outcome that maximises the seller’s ex ante
trade-surplus among all contract-implementable outcomes is the 0−maximal. In such
an outcome, trades takes place whenever

c ≤ ψB,0(v) = v − 1− F (v)
f(v) .

It is well known that this is the allocation arising in the monopoly-pricing game
where a privately informed seller makes a take-it-or-leave-it price offer to a single
privately informed buyer with regular value distribution F . Because the minimum
buyer payment is µγ(v) ≥ v, the lowest-type buyer always expects zero surplus. By the
Payoff Equivalence Theorem (see Myerson (1981)), the expected revenue of a c-cost
seller and the expected payoff of a v-value buyer in the outcome of the monopoly-pricing
game are identical to those arising in the 0−maximal outcome. As shown by Williams
(1987), the seller’s profit in the monopoly pricing game is the highest ex ante profit a
seller can obtain across all equilibria of all selling mechanisms which guarantee each
buyer type a payoff of at least zero. Summing up, we conclude the following.
Corollary 2.3 The expected trade-surplus in the trade-surplus maximising (0-maximal)
outcome is the highest profit a seller can obtain in any equilibrium of any selling
mechanism that satisfies interim buyer’s participation.

Remarkably, ex ante contracting between a third party and a seller who then trades
with a buyer with monopoly power, can turn the buyer’s monopoly into a seller’s one.

Further, note that K∗
0 = 0 and, thus, the budget-balancing T ∗

γ is also zero. In
principle, a simple royalty scheme which makes the third-party break-even is sufficient

11As in Theorem 2, the 1/2-maximal outcome is non-unique: any s∗
1/2 ∈ [0, v − Ec[c | c ≤ v]] is

1/2-maximal when value is known.
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to fully reverse bargaining power in the trading phase. Moreover, Corollary 2.1 implies
that — besides where cost and value supports are sufficiently disjoint so trade either
occurs almost surely or never — the royalty paid will be negative when the seller accepts
high prices and positive when the seller accepts low prices. Intuitively, the optimal
contract subsides S when higher prices are offered to make some high-cost types trade
when they otherwise would not, in order to encourage B to post those higher prices.
Conversely, acceptance at lower prices is penalised to reduce the probability of trade at
those price as a means of encouraging the buyer not to post lower prices.
Example 1.2 (Uniform distributions (continued)) At the seller-optimal (γ = 0) Γ = 1,
so types v < 1/2 are excluded from trade and types v ≥ 1/2 post p0(v) = v

2 + 1
4 .

The royalty schedule is k∗
0(p) = 2 − 3p, meaning that pair (c, v) trade if and only if

c ≤ p0(v)− k∗
0(p0(v)) = 2v − 1.

Maximising Buyer-Surplus In the 1−maximal outcome (and for any γ ≥ 1/2),
which maximises the buyer’s ex ante surplus, trades takes place whenever it is ex post
efficient, that is when

c ≤ ψB,1(v) = v.

Moreover, the buyer extracts the entire first-best surplus W e. In fact

Ev,c
[
q∗
γ(c, v)v − t∗γ(c, v)

]
= Ev,c

[
1{c ≤ v}(v − Ec[c | c ≤ v])

]
= Ev,c[1{v≥c}(v − c)].

To understand the result, note that a buyer with value v offers µγ(v) = Ec[c | c ≤ v], a
price that exactly compensates S for the expected cost it sustains if it sells whenever
c ≤ v. In turn, the royalty is equal to the price posted by B minus the value of B
inferred from the price just offered to S, in such a way that S earns v − c if it accepts
the offer from a v-type buyer, no matter its cost. That is, both the seller’s profit gross
of the fixed fee and the buyer surplus are equal to the entire surplus generated in the
downstream market. Nevertheless, both the third-party and S break even ex ante,
because the former recovers via the fixed fee the average payment it needed to pay to
S as subsidy, which is equal to the first best-welfare W e.

The buyer-optimal, budget-balanced outcome can be interpreted as a direct mecha-
nism with transfers for both the buyer and the seller, (q̃, t̃B, t̃S), where t̃S is the effective
transfer to seller including royalty payments that implements the ex post efficient allo-
cation of the good between a buyer and seller, q̃(c, v) = 1{c ≤ v}. The ex post payment
of the buyer is cost-independent and equal, in every state, to the expected externality
it imposes on the seller given their value, that is t̃B(c, v) = 1{c ≤ v}Ec[c | c ≤ v], as in
d’Aspremont and Gérard-Varet (1979). The ex post payment of the seller takes the
Groves (1973) form: the seller is made residual claimant on the realised surplus (i.e.,
if c ≤ v it receives a transfer of µ1(v)− k∗

1(µ1(v)) = v and bears cost c); in addition,
it pays a fixed fee, independent of both cost and value, equal to the ex ante surplus
in the efficient outcome, W e. Hence, t̃S(c, v) = 1{c ≤ v}v The resulting mechanism
is Bayesian incentive compatible and interim individually rational for the buyer and
dominant-strategy incentive compatible for the seller. It is budget balanced as S pays
a fixed fee of W e and

Ev.c
[
t̃S(c, v)− t̃B(c, v)

]
= Ev.c

[
1{c ≤ v}v − 1{c ≤ v}Ec[c | c ≤ v]

]
= W e.
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The impossibility result of Myerson and Satterthwaite (1983) is circumvented because
only ex ante (rather than interim) individual rationality of the seller is satisfied.
Example 1.3 (Uniform distributions (continued)) At the buyer-optimal (γ = 1) Γ = 0,
so every buyer-type v > 0 trades with strictly positive probability and posts price
p1(v) = v

2 . The royalty schedule is k∗
1(p) = −p, meaning that pair (c, v) trade if and

only if c ≤ p1(v)− k∗
1(p1(v)) = v.

4.2 Welfare Impact of Contracting

Here, we compare the total welfare — the sum of buyer and seller surplus — in the case
of no ex ante contracting with each γ-maximal outcome for γ ∈ [0, 1] as characterised
in Theorem 2.

As a first step, let’s define the outcome in the absence of ex ante contracting. The
buyer picks the price schedule pB(v), generating total welfare WB, where

pB(v) ∈ arg max
p

G(p)(v − p), WB :=
∫ v

v

∫ c

c
1{pB(v)≥c}(v − c)dGdF.

Moreover, denote by Wγ the total welfare in the γ-maximal outcome,

Wγ :=
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(v − c)dGdF.

We know W0 ≤ W1, given W1 = W e. The next proposition shows total welfare in
the γ-maximal outcome is weakly monotone increasing in γ.
Lemma 3 For any γ, γ′ ∈ [0, 1],

γ < γ′ =⇒ Wγ ≤ Wγ′

This Lemma allows us to prove the main result of this subsection. We show that
if the seller’s monopoly-pricing outcome generates higher welfare than the buyer’s
monopoly-pricing outcome, the total welfare effect of ex ante contracting is positive
across the ex ante frontier. Conversely, if a lower welfare is generated, the welfare effect
of ex ante contracting is ambiguous across the frontier.
Proposition 1 If W0 > WB then Wγ > WB for all γ ∈ [0, 1]. If W0 < WB, there exists
unique γ∗ ∈ (0, 1] such that Wγ < WB for γ ∈ [0, γ∗) and Wγ ≥ WB for γ ∈ [γ∗, 1].

The following example elaborates on the case in which both cost and value are
uniformly distributed.
Example 1.4 (Uniform distributions (continued)) With no contracting (k ≡ 0), the
buyer posts price pB(v) = v/2 and trade occurs if and only if c ≤ v/2, giving WB = 1/8.
Given earlier calculations, Wγ = 2Γ+1

6(Γ+1)2 . Cost and value distribution symmetry imply
WB = W0, In Figure 2, we plot the total welfare in the γ-maximal outcome versus the
total welfare in the case of no ex ante contracting.
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Figure 2: Total welfare in γ-maximal outcome versus in case of no ex ante contracting.

4.3 Relation to Myerson and Satterthwaite (1983)

In Myerson and Satterthwaite (1983), the search for an ex post efficient mechanism is
restricted to the set of direct mechanisms that satisfy Bayesian incentive compatibility
and interim individual rationality for both buyer and seller. If an outcome satisfies
these conditions, we shall say the outcome is MS-implementable.

Relative to the conditions for contract implementation without production subsidy,
MS-implementation weakens the seller’s constraints from monotonicity in cost of the
interim allocation to monotonicity of the ex post one, which characterises dominant
strategy incentive compatibility, and strengthens the seller’s participation constraints
from ex ante to ex-interim. The latter turns out to be decisive, perhaps not surprisingly
in light of Manelli and Vincent (2010) and subsequent work by Gershkov et al. (2013)
on the equivalence between Bayesian incentive compatibility and dominant strategy
incentive compatible mechanisms.
Proposition 2 Let UMS,UC be the set of MS-implementable and contract-implementable
ex ante utility profiles, respectively. UMS ⊆ UC, with strict nesting whenever cost and
value supports overlap.

In particular, all ex ante Pareto efficient profiles in UMS can be attained through
budget-balanced ex ante contracting. The proof proceeds by showing that a class
of mechanisms spanning UMS, viz. randomisations of markup-pooling mechanisms
(Proposition 9 of Yang and Yang (2025)), are ex ante equivalent to some contract-
implementable outcome.12

Example 1.5 (Uniform distributions (continued)) In Figure 3, we show how ex ante
contracting expands the utility possibility set beyond those that are MS-implementable.
See Appendix B for computations.

12In markup-pooling mechanisms, trade occurs if and only if the value of the buyer is above a
monotone transform of the seller’s cost (the markup function), with the exception that when cost falls
into a single interval (the pooling interval) the cost is resampled from the two ends of the interval. A
formal definition is provided in Appendix A.4.
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Figure 3: Ex ante buyer-seller utility possibility sets (UB, US) — uniform case

5 Discussion of Assumptions

Renegotiation Proofness We deliberately abstracted from any preferences of the
third-party, focusing instead on the set of outcomes implementable through contracting.
In practice, however, a third party may have its own objective. In that case, after
observing either the seller’s cost or the buyer’s posted price, the third party and the
seller may find it mutually beneficial to renegotiate.

First, suppose the third-party is welfare-maximising and the contract is force is the
1-maximal outcome of Theorem 2, which achieves ex post efficient trade. The following
is obvious.
Remark 1 If the third party is a welfare maximiser, no profitable renegotiation exists
away from the buyer-optimal contract.

Instead, assume the third party is revenue maximiser. In this case the third-party
will wish to implement the 0-maximal outcome and extract the seller surplus via the
fixed fee. Two natural renegotiation opportunities arise: (i) after the buyer posts its
price, and (ii) after the seller’s cost is realised but before the buyer’s price is posted.

Suppose renegotiation is possible after B posts its price, such that some cost types
would benefit from trade. If the buyer cannot post a new price after observing
renegotiation, the third party and S would renegotiate to the null contract (k∗ ≡ 0),
allowing the seller to trade whenever c ≤ p. If k(p) > 0, cost types c ∈ (max{c, p −
k(p)}, p) strictly benefit from the removal of royalty payments. If k(p) < 0, the third
party’s revenue is improved by renegotiation to the null royalty. In either case, the gains
may be split between third party and S. If the buyer is aware such renegotiation is
possible — regardless of whether they observe the renegotiated contract — they ignore
the ex ante contract and post their monopoly price. The resulting outcome is equivalent
to that arising when B has complete bargaining power. Therefore, renegotiation
following the posting of a price causes the countervailing power of the 0-maximal
contract to collapse entirely.
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Renegotiation following cost realisation but before price-posting is more delicate. In
fact, the following is true since we showed the 0-maximal outcome upper bounded the
seller’s ex ante profit across all outcomes satisfying buyer individual rationality and
incentive compatibility.
Remark 2 An ex ante contract that is contingent on the cost realisation cannot increase
the revenue of the third party contractor beyond that achieved in Corollary 2.3.

Yet, there might be incentives to renegotiate if certain cost values realise. Assuming
B observes the new contract, there may be interim gains from renegotiating from
the seller-optimal royalty contract k∗

0 to a contract which stipulates 0 royalty fees for
trade at a price equal to pS(c), where pS(c) ∈ arg maxp(p− c)(1− F (p)), and charges
extremely high royalties should the seller accept any other price. As in Corollary 2.2,
the new contract enforces that the buyer chooses between either posting pS(c) and
trading, or forging all trade. To prove this observation we invoke the following result.
Lemma 4 All cost types of S obtain the same trade surplus under a contract with
royalty scheme k∗

0 and a pS(c)-forcing contract.

Proof. From integration by parts,∫ v

v
1{ψB,0(v)≥c}(ψB,0(v)− c)dF =

∫ v

v
1{ψB,0(v)≥c}[(v − c)f(v)− (1− F (v))]dv

= (ψ−1
B,0(c)− c)(1− F (ψ−1

B,0(c)))

=
∫ v

v
1{ψB,0(v)≥c}(ψ−1

B,0(c)− c)dF

First expression is seller’s payoff under k∗
0 and last expression is their payoff under a

pS(c)−forcing contract.

Lemma 4 implies that, taking the fixed fee as sunk, cost types above the threshold p̃
defined in Corollary 2.1 — who expect to receive a royalty payment — are indifferent
between sticking to the 0-maximal contract and transitioning to an observable pS(c)-
forcing contract in exchange for forgoing the positive royalty payment they expect to
receive. Such a move strictly raises the third party’s revenue as they are no longer
obligated to pay out negative royalties to the seller.13 We conclude that for an interval
of high cost types renegotiation to a Pareto improving outcome is conceivable if S has
signed the 0-maximal contract.

Observability of Contracting Throughout the paper, we assumed the buyer
observed the contract signed by S. We now discuss the case in which the contract
between the third party and the seller is not observable by the buyer.

Because, by Remark 1, the third party has no incentive to sign a different contract
if they are a welfare maximiser, we focus on how Corollary 2.3 is affected by such
non-observability when the third party is a revenue maximiser.

13It follows from this observation that some cost types obtain higher trade surplus under a contract
(0, k∗) than in the seller-optimal mechanism where S is a monopolist. The existence of mechanisms
that give some type of sellers a payoff higher than the monopoly payoff is demonstrated by example in
Yilankaya (1999)
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Proposition 3 Suppose B cannot observe the third-party contract. Then the seller-
optimal royalty contract is the null scheme, k∗ ≡ 0, with the resulting trade surplus of
S being extracted via the fixed fee.

The reasoning for Proposition 3 is straightforward from our discussion of renegotiation
proofness and the proof is omitted.

Contractibility Assumptions Throughout the paper, we assumed the third-party
contract could condition on whether trade occurs and what price the buyer posts to
the seller.

If the contract can only condition on what price the buyer posts, then any payments
required from the seller are sunk by the time the seller is deciding whether to accept
trade with the buyer at the posted price or not. Consequently, the contract cannot
implement anything beyond the downstream mechanism arising when there is no
contract.
Remark 3 If the third-party contract can condition on the price posted, but not on
whether trade occurs or not, then the contract cannot affect the outcome.

Instead, if the third-party contract can condition on whether trade occurs but not on
the price posted, the downstream mechanism may be influenced by the contract. In
what follows, we shall close down the possibility of randomisation in the contract. We
next define the associated restricted form of implementation.
Definition 3 An outcome (q, t) is flat-contract implementable if (q, t) is contract
implementable by a deterministic contract m which is constant over prices, p. 14

Recall, pB(v) represents the price schedule of the buyer when the null contract is in
place (m ≡ 0). With this, the next Lemma characterises the flat-contract-implementable
outcomes.
Lemma 5 (q, t) is a flat-contract-implementable outcome if and only if:

1. q(c, v) = 1{pB(v − k) ≥ c} for some k ∈ R.

2. (q, t) is contract implementable

The restriction imposed by Condition (1) in Lemma 5 is non-trivial. Without being
able to write a contract contingent on the price at which trade occurs, the contract
cannot alter the buyer’s price schedule beyond effectively shifting the buyer’s value
downwards by a fixed constant.

Proof. As a flat contract is a type of contract, any flat-contract-implementable outcome
is necessarily contract implementable. Further, if the fee demanded when trade occurs
is k ∈ R, the seller accepts to trade if and only if p− k ≥ c. So, the buyer’s optimal
price schedule solves

pk(v) ∈ arg max
p

G(p− k)(v − p) ⇐⇒ pk(v) = k + pB(v − k)

14If we allow for contract randomisation by ω, trade probabilities take the form q(c, v) = Pω

(
mω ≤

p(v)− c
)

for some random variable mω and the buyer’s posted-price schedule p(v). For deterministic
outcomes (q(c, v) ∈ {0, 1}) it is without loss to restrict attention to degenerate mω. Therefore, under
F -regularity, Theorem 2 implies any point on the frontier is flat-contract implementable by some
random mω only if it is also implementable by a degenerate flat contract.
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The induced allocation rule is q(c, v) = 1{(k+ pB(v− k))− k ≥ c} = 1{pB(v− k) ≥ c}.
For the reverse implication, if the two conditions hold then by Condition (2), the

outcome is contract implementable. Then Condition (1) implies the outcome is further
flat-contract implementable.

Contrary to Corollary 2.3, the seller-optimal flat-contract-implementable outcome
only partially countervails the bargaining power of B, but is unable to implement the
seller-optimal outcome. That flat-contract-implementable outcomes can do no better
than contract-implementable outcomes is immediate from Lemma 5: flat contracts add
an additional constraint on top of contract implementability.

We illustrate by means of a uniform example that flat-contract implementation may
fail to implement the seller-optimal.
Example 1.6 (Uniform distributions (continued)) By Lemma 5, the contract choice
boils down to a single value of k. Let us consider the flat contract which optimises seller
surplus. Utilising payoff equivalence, one derives that in any flat-contract-implementable
outcome, the seller’s surplus is equal to∫ v

v

∫ c

c
1{

v−k
2 ≥c

}(2v − 1− c)dGdF

This is optimised at k = 0.2, giving the seller a surplus of 4
75 . However, the seller-

optimal outcome gives the seller a surplus equal to 1
12 . Because 1

12 >
4
75 the example

demonstrates that the seller-optimal outcome is generally not implementable when the
contract can only condition on whether trade occurs and not on the price posted by the
buyer.

In any flat-contract-implementable outcome, trade occurs if and only if c ≤ p(v)− k̄ =
pB(v − k̄). Because pB is non-decreasing, raising k̄ can only lower the trading efficiency
in the downstream market relative to the scenario in which the third party offers S
a null contract (k̄ = 0). We now show that even for k̄ < 0, ex post efficient trade is
flat-contract implementable.
Proposition 4 Suppose G is regular. Efficient trade is not flat-contract implementable
whenever [v, v] ∩ [c, c] = [c, v] has strictly positive Lebesgue measure.

Proof. By Lemma 5, for any flat-contract-implementable outcome trade occurs accord-
ing to q(c, v) = 1{pB(v − k̄) ≥ c} for some k̄ ∈ R. Given [v, v] ∩ [c, c] = [c, v], for
v ∈ [c, c] efficient trade requires v = pB(v − k̄), yet by G-regularity this requires

v + G(v)
g(v) = v − k̄ ⇐⇒ G(v)

g(v) = −k̄ =⇒ G(v)
g(v) constant for v ∈ [c, c]

We prove this is impossible. First, for v ∈ (c, c], G(v) > 0 and g(v) > 0 so k̄ < 0.
Rewrite the condition as g(v) = −1

k̄
G(v). The solutions of this equation are G(v) =

Ae−v/k̄ for constant A ∈ R. Yet,

0 v↘c←−− G(v) = Ae−v/k̄ v↘c−−→ Ae−c/k̄

giving A = 0. But this violates the properties of G being a CDF. Hence, efficient trade
is impossible.
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APPENDIX

A Omitted Proofs

Proofs are presented in the same order as in the text, except for a formula from Myerson
and Satterthwaite (1983) that we shall use repeatedly which we state first.
Lemma A.1 (Myerson and Satterthwaite (1983) formula) For F a regular value
distribution,∫ v

v

∫ c

c
1{v≥c} (ψB,0(v)− c) dGdF =

∫ c

c
(1− F (x))G(x)dx−

∫ c

v
(1− F (x))G(x)dx

=
∫ max{c,v}

c
G(x)dx

Proof. Immediate from formulae on page 272 of Myerson and Satterthwaite (1983).

A.1 Proof of Lemma 2

Proof. Fix contract m and (pm, am) ∈ E(m). We decompose m as

m(ω, x, p) = x[m(ω, 1, p)−m(ω, 0, p)] +m(ω, 0, p) = xk(ω, p) + T (ω, p)

As T (ω, p) is paid irrespective of whether S accepts trade, changes to T (ω, p) do not af-
fect the outcome implemented by the contract. Therefore, so long as Eω,v[|T (ω, pm(v))|] <
∞ we can construct a new contract m̃(ω, x, p) = xk(ω, p) + Eω,v[T (ω, pm(v))]. That
Eω,v[|T (ω, pm(v))|] <∞ follows immediately due to the uniform upper bound on the
contract fees. As argued, since the fixed fee was sunk and hence does not affect seller
or buyer’s incentives, (pm, am) ∈ E(m̃). Further,

Eω,c,v,x∼Bern(a(ω,c,pm(v)))[m̃(ω, x, pm(v))] = Eω,c,v,x∼Bern(a(ω,c,pm(v)))[m(ω, x, pm(v))]

and so expected revenue for third party is equal under m and m̃.

A.2 Proof of Theorem 2

Proof. We show (q∗
γ, t

∗
γ) achieves an upper bound on the γ-convex combination of buyer

and seller surpluses across all outcomes satisfying the Conditions of Lemma 1 and
(S-IR). Then, we show (q∗

γ, t
∗
γ) itself satisfies Lemma 1 and (S-IR).

Upper Bound: Fix (q, t) a contract-implementable outcome satisifying (S-IR). Let
Π̂γ(q, t) be the γ-convex combination of buyer and seller trade surpluses under (q, t).
Using Fubini and the buyer’s participation and incentive compatibility constraints, if
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γ < 1/2,

Π̂γ(q, t) =
∫ v

v

∫ c

c
γ[q(c, v)v − t(c, v)] + (1− γ)[t(c, v)− cq(c, v)]dGdF

=
∫ v

v

∫ c

c

q(c, v) [γ(v − ψ0,B(v)) + (1− γ)(ψ0,B(v)− c)]
+ (2γ − 1)︸ ︷︷ ︸

≤0

(q(c, v)v − t(c, v))︸ ︷︷ ︸
≥0

 dGdF
≤
∫ v

v

∫ c

c
q(c, v) (γ(v − ψ0,B(v)) + (1− γ)(ψ0,B(v)− c)) dGdF

= (1− γ)
∫ v

v

∫ c

c
q(c, v)

(
v + 2γ − 1

1− γ
1− F (v)
f(v) − c

)
dGdF =: Πγ(q)

For γ < 1/2, Π̂γ(q∗
γ, t

∗
γ) ≥ Πγ(q) ≥ Π̂γ(q, t) from pointwise maximisation of the above.

For γ > 1/2, we instead have

Π̂γ(q, t) =
∫ v

v

∫ c

c
γ[q(c, v)v − t(c, v)] + (1− γ)[t(c, v)− cq(c, v)]dGdF

=
∫ v

v

∫ c

c
(2γ − 1)[q(c, v)v − t(c, v)] + (1− γ)[q(c, v)(v − c)]dGdF

= (1− γ)
∫ v

v

∫ c

c
[q(c, v)(v − c)]dGdF + (2γ − 1)

∫ v

v

∫ c

c
q(c, v)v − t(c, v)dGdF

By (S-IR) and noting t(c, v)− q(c, v)c = q(c, v)(v− c)− (q(c, v)v− t(c, v)) we require

0 ≤
∫ v

v

∫ c

c
t(c, v)− q(c, v)c dGdF

≤
∫ v

v

∫ c

c
q(c, v)(v − c)− (q(c, v)v − t(c, v)) dGdF∫ v

v

∫ c

c
q(c, v)v − t(c, v) dGdF ≤

∫ v

v

∫ c

c
q(c, v)(v − c) dGdF

Substituting into Π̂γ(q, t) we obtain:

Π̂γ(q, t) = (1− γ)
∫ v

v

∫ c

c
[q(c, v)(v − c)]dGdF + (2γ − 1)

∫ v

v

∫ c

c
q(c, v)v − t(c, v)dGdF

≤ (1− γ)
∫ v

v

∫ c

c
[q(c, v)(v − c)]dGdF + (2γ − 1)

∫ v

v

∫ c

c
q(c, v)(v − c)dGdF

≤ γ
∫ v

v

∫ c

c
q(c, v)(v − c) dGdF

≤ γ
∫ v

v

∫ c

c
1{v≥c}(v − c) dGdF := Π̄γ

With γ > 1/2 the posited γ-maximal allocation and transfer rules are q∗
γ = 1{c≤v},

t∗γ = µγ(v)1{c≤v}. We show that Π̂γ(q∗
γ, t

∗
γ) = Π̄γ by demonstrating that in (q∗

γ, t
∗
γ), the
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seller trade surplus is 0, while the buyer’s ex ante surplus is equal to the total value of
efficient trade.

First, the seller makes 0 trade surplus since,

∫ v

v

∫ c

c

(
t∗γ(c, v)− c q∗

γ(c, v)
)
dGdF =

∫ v

v

∫ c

c

(
µγ(v)1{c≤v} − c1{c≤v}

)
dGdF

=
∫ v

v

∫ c

c
1{c≤v}

(
µγ(v)− c

)
dGdF

=
∫ v

v

[
G(v)µγ(v)−

(∫ c

c
1{c≤v}cdG

)]
dF

=
∫ v

v
[G(v)µγ(v)−G(v)Ec[c | c ≤ v]] dF

= 0.

Second, the buyer’s ex ante payoff is the total value of efficient trade because,

∫ v

v

∫ c

c

(
q∗
γ(c, v)v − t∗γ(c, v)

)
dGdF =

∫ v

v

∫ c

c
1{v≥c}(v − µγ(v))dGdF

=
∫ v

v
G(v)(v − µγ(v))dF

=
∫ v

v
vG(v)−G(v)Ec[c | c ≤ v]dF

=
∫ v

v
vG(v)−

(∫ c

c
1{v≥c}cdG

)
dF

=
∫ v

v

∫ c

c
1{v≥c}(v − c)dGdF

Hence, Π̂γ(q∗
γ, t

∗
γ) = Π̄γ ≥ Π(q, t) for any (q, t) which is contract-implementable

without outside subsidy when γ > 1/2.

Therefore, if (q, t) is contract-implementable and satisfies (S-IR), Π̂γ(q, t) ≤ Π̂γ(q∗
γ, t

∗
γ).

Implementation We verify that (q∗
γ, t

∗
γ) satisfies the conditions of Lemma 1. First,

it is clearly of pure posted price form, so Condition 5 is satisfied. Because q∗
γ(c, v) =

1{ψB,γ(v) ≥ c}, q∗
γ(c, v) is clearly non-increasing in c for each fixed v, giving Condition

1.
The second condition of Lemma 1 holds because ψB,γ(v) is increasing by the F -

regularity assumption and since
∫ c
c q(c, v)dG = G(ψB,γ(v)).

For γ < 1/2 consider, µγ(v) = Ec[ψ−1
B,γ(c) | ψB,γ(v) ≥ c] = v. Therefore,∫ c

c
q∗
γ(c, v)v − t∗γ(c, v)dG =

∫ c

c
1{ψB,γ(v)≥c}[v − µγ(v)]dG = 0

On the other hand, if γ > 1/2,∫ c

c
q∗
γ(c, v)v − t∗γ(c, v)dG =

∫ c

c
1{v≥c}(v − Ec[c | v ≥ c])dG ≥ 0
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Therefore, Condition 4 is satisfied for any (q∗
γ, t

∗
γ), γ ∈ [0, 1].

Finally, we show that∫ c

c
t∗γ(c, v)dG =

∫ c

c

[
vq∗

γ(c, v)− vq∗
γ(c, v) + t∗γ(c, v)−

∫ v

v
q∗
γ(c, x)dx

]
dG

Note that buyer’s interim transfers are
∫ c
c t

∗
γ(c, v)dG = µγ(v)G(ψB,γ(v)).

Suppose γ < 1/2, then lowest type buyer makes zero profit. For v ∈ [v, v], ψB,γ(v) ≤ c
trade never occurs and no transfer is ever paid in (q∗

γ, t
∗
γ) so the envelope condition is

trivially satisfied. For v-types with ψB,γ(v) > c, then
∫ c

c

[
vq∗

γ(c, v)−
∫ v

v
q∗
γ(c, x)dx

]
dG =

[
v − 1

G(ψB,γ(v))

∫ v

v
G(ψB,γ(x))dx

]
︸ ︷︷ ︸

:=A(v)

G(ψB,γ(v)

Then,

A(v) = v − 1
G(ψB,γ(v))

∫ v

v
G(ψB,γ(x))dx

= v − 1
G(ψB,γ(v))

[
[xG(ψB,γ(x))]vv −

∫ v

v
xdG(ψB,γ(x))

]

= G(ψB,γ(v))
G(ψB,γ(v))v + 1

G(ψB,γ(v))

∫ v

v
xdG(ψB,γ(x))

= G(ψB,γ(v))
G(ψB,γ(v))v + 1

G(ψB,γ(v))

∫ ψB,γ(v)

ψB,γ(v)
ψ−1

B,γ(u)dG

= Ec[ψ−1
B,γ(c) | c ≤ ψB,γ(v)] = µγ(v)

where again we recall we use the generalised inverse for ψB,γ . Therefore, when γ ≤ 1/2
for all v ∈ [v, v],

∫ c

c
t∗γ(c, v)dG =

∫ c

c

[
vq∗

γ(c, v)− vq∗
γ(c, v) + t∗γ(c, v)−

∫ v

v
q∗
γ(c, x)dx

]
dG

If γ > 1/2,
∫ c
c vq

∗
γ(c, v)−t∗γ(c, v)dG =

∫ c
c 1{c≤v}(v−Ec[c | c ≤ v])dG and

∫ c
c t

∗
γ(c, v)dG =

G(ψB,γ(v)) · µγ(v) = G(v)Ec[c | c ≤ v]. For

B(v) :=
∫ c

c

[
vq∗

γ(c, v)− vq∗
γ(c, v) + t∗γ(c, v)−

∫ v

v
q∗
γ(c, x)dx

]
dG

we have

B(v) = G(v)Ec[max{c, v} | c ≤ v]− (v − Ec[c | c ≤ v])G(v)

=
∫ c

c
1{c≤v} ·max{c, v} − 1{c≤v}(v − c)dG

=
∫ c

c
1{c≤v}c dG

= G(v)Ec[c | c ≤ v]
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And so, the envelope condition holds over γ > 1/2 also.
To show (q∗

γ, t
∗
γ) satisfies (S-IR), note that seller trade surplus is (weakly) decreasing

in γ and is constant over [1/2, 1]. As a result, it is sufficient to show (q∗
1/2, t

∗
1/2) satisfies

(S-IR). We may set
∫ c
c vq

∗
γ(c, v)− t∗γ(c, v)dG = 0 as a 1/2-maximal outcome. By Fubini,

the binding buyer’s participation, buyer’s incentive compatibility, and Lemma A.1,∫ v

v

∫ c

c
t∗1/2(c, v)− q∗

1/2(c, v)cdGdF =
∫ v

v

∫ c

c
1{v≥c} [ψB,0(v)− c] dGdF

=
∫ v

v

∫ c

c

G(c)
g(c) 1{c≥v}dGdF −

∫ v

c
(1− F (x))G(x)dx

=
∫ max{v,c}

c
G(x)dx ≥ 0

A.3 Proof of Corollary 2.1

We prove four lemmata. Lemma A.2 derives an expression for expected royalty
payments over the Pareto frontier, giving us the bound in point (i). Lemma A.3 shows
the royalties, k∗

γ, are decreasing over p ∈ µγ([v, v]), giving point (ii). Lemma A.4
demonstrates point (iii). Lemma A.5 shows that the interior of [c, c] ∩ ψB,γ([v, v]) is
non-empty if and only if µγ([v, v]) has strictly positive Lebesgue measure. Therefore,
whenever the interior of [c, c] ∩ ψB,γ([v, v]) is non-empty, the buyer posts an interval of
prices and from Lemma A.2 these are on average non-positive and from Lemma A.3 are
decreasing in prices. Consequently, royalties are necessarily negative for high enough
prices, giving point (iv).
Lemma A.2 For γ ∈ [0, 1], in the γ-maximal royalty scheme, k∗

γ, equilibrium expected
royalty payments are non-positive and equal to

Kγ =
max

0, 1− 2γ
1− γ

− 1
 · ∫ v

v
G(ψB,γ(x))[1− F (x)]dx ∈ [−W e, 0]

Proof. Under the γ-maximal allocation, we mildly abuse notation and write the seller’s
surplus including their contract payments and their trade surplus as,

πγ := Eω,v,c,x∼Bern(ak∗
γ (ω,c,pk∗

γ (v)))(ω,c,pk∗
γ

(v))[π(x, pk∗
γ
(v), k∗

γ; c, ω)]

π̂γ := Eω,v,c,x∼Bern(ak∗
γ (ω,c,pk∗

γ (v)))(ω,c,pk∗
γ

(v))[π̂(x, pk∗
γ
(v), k∗

γ; c, ω)]

Then,

πγ =
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(pk∗

γ
(v)− k∗

γ(pk∗
γ
(v))− c)dGdF

=
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(ψB,γ(v)− c)dGdF (†)
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and,

π̂γ =
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(pk∗

γ
(v)− c)dGdF

=
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(µγ(v)− c)dGdF (‡)

Denote the expected royalty payments in the γ−maximal outcome as K∗
γ . We have

the following relation
π̂γ −K∗

γ = πγ

Therefore, by (†) and (‡),

K∗
γ = π̂γ − πγ

=
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(µγ(v)− ψB,γ(v))dGdF

Now, using the expression for µγ(v) derived in the proof of Theorem 2, µγ(v) =
v − 1

G(ψB,γ(v))
∫ v
v G(ψB,γ(x))dx, we obtain by application of Fubini,

K∗
γ =

∫ v

v

∫ c

c
1{ψB,γ(v)≥c}(µγ(v)− ψB,γ(v))dGdF

=
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}


− 1
G(ψB,γ(v))

∫ v
v G(ψB,γ(x))dx

+ max

0, 1−2γ
1−γ

 · 1−F (v)
f(v)

 dGdF

=
∫ v

v

∫ c

c
1{ψB,γ(v)≥c}

−1− F (v)
f(v) + max

0, 1− 2γ
1− γ

 · 1− F (v)
f(v)

 dGdF
=
max

0, 1− 2γ
1− γ

− 1
 · ∫ v

v
G(ψB,γ(x))[1− F (x)]dx

Clearly, K∗
γ is decreasing in γ. At γ = 0, K∗

γ = 0. At γ = 1, ψB,γ(v) = v and

max

0, 1−2γ
1−γ

− 1 = −1. By Lemma A.1,

−K∗
1 =

∫ v

v
G(x)[1− F (x)]dx

=
∫ v

v
G(x)[1− F (x)]dx+

∫ c

v
G(x)[1− F (x)]dx−

∫ c

v
G(x)[1− F (x)]dx

=
( ∫ v

v G(x)[1− F (x)]dx+
∫ c
v G(x)[1− F (x)]dx

+W e −
∫ v
v

∫ c
c 1{v≥c}G(x)dxdF −

∫ c
c

∫ v
v 1{v≥c}(1− F (x))dxdG

)

= W e +
[ ∫ v

v G(x)[1− F (x)]dx+
∫ c
v G(x)[1− F (x)]dx

−
∫ c
c G(x)[1− F (x)]dx−

∫ v
v G(x)[1− F (x)]dx

]
= W e

As such, K∗
γ ∈ [−W e, 0].

Lemma A.3 If G is regular, k∗
γ is monotone decreasing over p ∈ µγ([v, v]).
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Proof. Over p ∈ µγ(ψ−1
B,γ([c, c])) ⊆ µγ([v, v]), royalties are implicitly defined by k∗

γ(pk∗
γ
(v)) =

pk∗
γ
(v) − ψB,γ(v). For ℓ a function of bounded variation, denote by dℓ the Lebesgue-

Stieltjes (signed) measure induced by ℓ, i.e., for a < b dℓ((a, b]) = ℓ(b)− ℓ(a). Note dℓ is
well-defined even if ℓ is non-differentiable. If dℓ > (<)0 then ℓ is increasing (decreasing).
Because F has increasing hazard rate, pk∗

γ
, ψB,γ, and ψ−1

B,γ are monotone functions on
compact intervals and are therefore bounded. Hence, the Lebesgue-Stieltjes measure is
well-defined for these functions.

We first prove that d(ψ−1
B,γ) ≤ λ where λ is the Lebesgue measure. Because F has

increasing hazard rate, fix any a < b, then

ψB,γ(b)− ψB,γ(a) = b− a−max

0, 2γ − 1
1− γ

︸ ︷︷ ︸
≥0

(
1− F (b)
f(b) − 1− F (a)

f(a)

)
︸ ︷︷ ︸

≤0 as F regular

≥ b− a (∼)

For any a < b in the range of ψ−1
B,γ, because the inverse in increasing, there exists

x < y with ψ−1
B,γ(x) = a < b = ψ−1

B,γ(y). Plugging into (∼), d(ψ−1
B,γ)((x, y]) = ψ−1

B,γ(y)−
ψ−1

B,γ(x) ≤ y − x. Therefore, ψ−1
B,γ has Lipschitz constant 1 and we have d(ψ−1

B,γ)
dλ
≤ 1. As

a result, for any non-negative integrable function ℓ,
∫
ℓd(ψ−1

B,γ) ≤
∫
ℓdλ.

Because k∗
γ(pk∗

γ
(v)) = pk∗

γ
(v)− ψB,γ(v), we have the measure identity, d(k∗

γ ◦ pk∗
γ
) =

dpk∗
γ
− dψB,γ . Fix v1, v2 ∈ [v, v] with v1 < v2 offering prices pk∗

γ
(v1), pk∗

γ
(v1) ∈ µγ([v, v]).

We have, c < ψB,γ(v1) ≤ ψB,γ(v1). Then,

d(k∗
γ ◦ pk∗

γ
)((v1, v2]) = dpk∗

γ
((v1, v2])− dψB,γ((v1, v2])

=
[
v2 − v1 − d

[
1

G(ψB,γ(·))
∫ ·
v G(ψB,γ(x))dx

]
((v1, v2])

−dψB,γ((v1, v2])

]

=
∫ v2

v1


g(ψB,γ(v))
G2(ψB,γ(v))

∫ v

v
G(ψB,γ(x))dx︸ ︷︷ ︸

:=B(v)

−1

 dψB,γ(v)

Because ψB,γ and G/g are both increasing,

B(v) = g(ψB,γ(v))
G2(ψB,γ(v))

∫ v

v
G(ψB,γ(x))dx

= g(ψB,γ(v))
G2(ψB,γ(v))

∫ v

v

G(ψB,γ(x))
g(ψB,γ(x)) g(ψB,γ(x))dx

<
1

G(ψB,γ(v))

∫ v

v
g(ψB,γ(x))dx

= 1
G(ψB,γ(v))

∫ ψB,γ(v)

ψB,γ(v)
g(u)d(ψ−1

B,γ(u))

≤ 1
G(ψB,γ(v))

∫ ψB,γ(v)

ψB,γ(v)
g(u)du

= G(ψB,γ(v))−G(ψB,γ(v))
G(ψB,γ(v))
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As a result, B(v) < 1. As dψB,γ > 0,

d(k∗
γ ◦ pk∗

γ
)((v1, v2]) =

∫ v2

v1
(B(v)− 1)dψB,γ(v) < 0

Because dpk∗
γ
> 0, this implies dk∗

γ < 0 and hence that k∗
γ is strictly decreasing over

p ∈ µγ([v, v]).

Lemma A.4 For 1/2 > γ > γ′ and p ∈ µγ([v, v]) ∩ µγ′([v, v]), k∗
γ(p) < k∗

γ′(p).

Proof. As in Lemma A.3, we note royalties are implicitly defined by k∗
γ(pk∗

γ
(v)) =

pk∗
γ
(v)− ψB,γ(v). Because ψB,γ(v) for fixed v is strictly increasing in γ,

pk∗
γ
(v) = µγ(v) =

Ec[ψ
−1
B,γ(c) | c ≤ ψB,γ(v)] if γ ≤ 1/2,

Ec[c | c ≤ v] if γ > 1/2

is increasing γ for γ < 1/2. Therefore, since d
dγ

(k∗
γ ◦ pk∗

γ
)(v) =

dk∗
γ(pk∗

γ
(v))

dγ

dpk∗
γ

(v)
dγ

if
d
dγ
k∗
γ(pk∗

γ
(v)) < 0 then

dk∗
γ(pk∗

γ
(v))

dγ
< 0. Note that any value type v posting p ∈

µγ([v, v]) ∩ µγ′([v, v]) must satisfy ψB,γ̃(v) > c for all γ̃ ∈ [γ′, γ]. Consider for γ < 1/2,

d

dγ
k∗
γ(pk∗

γ
(v)) = dµγ(v)

dγ
− dψB,γ(v)

dγ

= d

dγ

(
v − 1

G(ψB,γ(v))

∫ v

v
G(ψB,γ(x))dx

)
− 1

(1− γ)2
1− F (v)
f(v)

=
 1

(1−γ)2
1−F (v)
f(v)

[
g(ψB,γ(v))
G(ψB,γ(v))2

∫ v
v G(ψB,γ(x))dx

]
− 1

(1−γ)2
1

G(ψB,γ(v))
∫ v
v g(ψB,γ(x))1−F (x)

f(x) dx− 1
(1−γ)2

1−F (v)
f(v)


≤ 1

(1− γ)2
1− F (v)
f(v)

 g(ψB,γ(v))
G(ψB,γ(v))2

∫ v
v G(ψB,γ(x))dx

− 1
G(ψB,γ(v))

∫ v
v g(ψB,γ(x))dx− 1


= 1

(1− γ)2
1− F (v)
f(v)

 g(ψB,γ(v))
G(ψB,γ(v))2

∫ v
v G(ψB,γ(x))dx

− 1
G(ψB,γ(v))

∫ v
v

g(ψB,γ(x))
G(ψB,γ(x))G(ψB,γ(x))dx− 1


≤ 1

(1− γ)2
1− F (v)
f(v)

 g(ψB,γ(v))
G(ψB,γ(v))2

∫ v
v G(ψB,γ(x))dx

− g(ψB,γ(v))
G(ψB,γ(v))2

∫ v
v G(ψB,γ(x))dx− 1


= − 1

(1− γ)2
1− F (v)
f(v) < 0

Therefore, for 1/2 > γ > γ′ and p ∈ µγ([v, v]) ∩ µγ′([v, v]), k∗
γ(p) < k∗

γ′(p).

Lemma A.5 The interior of [c, c] ∩ ψB,γ([v, v]) is non-empty if and only if µγ([v, v])
has strictly positive Lebesgue measure.

Proof. Recall µγ(v) = Ec[ψ−1
B,γ(c) | c ≤ ψB,γ(v)]. Then,

µγ(v) = v

µγ(v) = Ec[ψ−1
B,γ(c) | c ≤ ψB,γ(v)]

= v − 1
G(ψB,γ(v))

∫ v

v
G(ψB,γ(x))dx
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We first prove that if [c, c] ∩ ψB,γ([v, v]) has non-empty interior, µγ([v, v]) has strictly
positive Lebesgue measure. If the interior is non-empty then either v > ψ−1

B,γ(c) > v or
v > ψ−1

B,γ(c) > v.

If v > ψ−1
B,γ(c) > v, G(ψB,γ(v)) = 1 but

∫ v
v G(ψB,γ(x))dx < v−v, so µγ(v) > v = µγ(v).

Because µγ is continuous, by intermediate value theorem µγ([v, v]) = [µγ(v), µγ(v)] and
µγ(v)− µγ(v) > 0.

If v > ψ−1
B,γ(c) > v, 1

G(ψB,γ(v)) ≥ 1 and
∫ v
v G(ψB,γ(x))dx < v − v, and similar logic

applies as in the other case.
Second, that if µγ([v, v]) has strictly positive Lebesgue measure then the interior of

[c, c] ∩ ψB,γ([v, v]) is non-empty follows immediately from the definition of µγ.

A.4 Proof of Proposition 2

From Proposition 9 of Yang and Yang (2025), any MS-implementable interim payoff
may be achieved through randomisation over markup-pooling mechanisms. For any
mechanism (q, t) which arises from a randomisation over markup-pooling mechanisms,
we find a system of transfers t̃ such that (q, t̃) is contract implementable and such that
(q, t) and (q, t̃) are ex ante payoff equivalent.

From Yang and Yang (2025) for any markup-pooling outcome (q, t) the allocation
rule may be written as

q(c, v) =

1{v ≥ ξ(c)} c ̸∈ [cL, cH ]
λ1{v ≥ ξ(cL)}+ (1− λ)1{v ≥ ξ(cH)} c ∈ [cL, cH ]

for some non-decreasing function ξ, interval [cL, cH ], and constant λ ∈ [0, 1].
It is routine to check any such q(c, v) is non-increasing in c for each fixed v and

non-decreasing in v for each fixed c. Further, since mixtures preserve monotonicity,
randomisations over markup-pooling mechanisms are also non-increasing in c for each
v and non-decreasing in v for each c.

Proof. Let (q, t) be a randomisation over markup-pooling mechanisms which is MS-
implementable. Define t̃(c, v) = d(v)q(c, v) where

d(v)
∫ c

c
q(c, v)dG =

∫ c

c

[
vq(c, v)− vq(c, v) + t(c, v)−

∫ v

v
q(c, x)dx

]
dG (⋄)

and d(v) = min{c, v} for all v such that 0 =
∫ c
c q(c, v)dG. Since (q, t) is MS-

implementable, the buyer’s envelope condition implies that by construction of t̃,∫ c
c t(c, v)dG =

∫ c
c t̃(c, v)dG.

Because (q, t) is MS-implementable 0 ≤
∫ c
c vq(c, v) − t(c, v)dG, giving d(v) ≤ v for

all v.
Suppose v′ > v and d(v′) = d(v) := d. We show this implies

∫ c
c q(c, v′)dG =∫ c

c q(c, v)dG. As
∫ c
c q(c, v)dG is non-decreasing in v,

∫ c
c q(c, v′)dG ≥

∫ c
c q(c, v)dG. Sup-

pose, seeking contradiction that
∫ c
c q(c, v′)dG >

∫ c
c q(c, v)dG.
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By subtracting (⋄) at v′ and v,

d

(∫ c

c
q(c, v′)dG−

∫ c

c
q(c, v)dG

)
=
 v′

(∫ c
c q(c, v′)dG

)
−v

(∫ c
c q(c, v)dG

)
−
∫ v′

v

∫ c
c q(c, x)dGdx


Consequently, we have the two conditions

(v′ − d)
(∫ c

c
q(c, v′)dG−

∫ c

c
q(c, v)dG

)
=
∫ v′

v

(∫ c

c
q(c, x)dG−

∫ c

c
q(c, v)dG

)
dx

(d− v)
(∫ c

c
q(c, v′)dG−

∫ c

c
q(c, v)dG

)
=
∫ v′

v

(∫ c

c
q(c, v′)dG−

∫ c

c
q(c, x)dG

)
dx

Because
∫ c
c q(c, v′)dG >

∫ c
c q(c, v)dG, the last two equations imply v < d < v′. Yet this

implies v < d(v), a contradiction.
Hence, d(v) = d(v′) implies

∫ c
c q(c, v′)dG =

∫ c
c q(c, v)dG. Now, if v′ > v and d(v) =

d(v′),
0 =

∫ c

c
q(c, v′)− q(c, v)dG

Since q(c, v) is non-decreasing in v for each c this implies q(c, v′)− q(c, v) ≥ 0 for all c
and thus that q(c, v′) = q(c, v) for all c — up to G-null sets. Whence, q factors through
d, as does t̃ since t̃(c, v) = d(v)q(c, v).

By construction, (q, t̃) satisfies the conditions of Lemma 1 and so is contract imple-
mentable. Further, as the allocation rule is the same in (q, t) and (q, t̃) and because∫ c

c
t(c, v)dG =

∫ c

c
t̃(c, v)dG =⇒

∫ v

v

∫ c

c
t(c, v)dGdF =

∫ v

v

∫ c

c
t̃(c, v)dGdF

ex ante payoffs are the same under the two outcomes. The result follows.

B Computation of UPS

We have c ∼ U [0, 1], v ∼ U [0, 1]. First, in any buyer incentive compatible mechanism,
by payoff equivalence and Fubini, the buyer and seller surpluses are equal to

BS(q) =
∫ 1

0

∫ 1

0
q(c, v)[1− v]dvdc

SS(q) =
∫ 1

0

∫ 1

0
q(c, v)[2v − 1− c]dvdc

We derive the contract-implementable frontier. From Theorem 2, the frontier is
spanned by q∗

γ(c, v) = 1{ψB,γ(v) ≥ c}. Define Γ = max{0, (1− 2γ)/(1− γ)}. Then, the
contract-implementable utility possibility frontier is defined by

UC = {(UB, US) =
(

1
6(1 + Γ)2 ,

Γ
3(1 + Γ)2

) ∣∣∣∣∣∣ γ ∈ [0, 1]


This gives the blue boundary for UB ≥ 1/24.
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For the boundary when UB ∈ [0, 1/24), we solve the problem

V (u) = max
q
SS(q)

st.


∫ 1

0
∫ 1

0 q(c, v)[2v − 1− c]dvdc ≥ 0
u =

∫ 1
0
∫ 1

0 q(c, v)[1− v]dvdc

for u ∈ [0, 1/24). This solves to V (u) =
√

6u
3 − 2u. This defines the contract feasible set

as the origin, (UB, US) = (0, 0) is feasible and the utility possibility set is convex.
For the Myerson-Satterthwaite frontier, we employ the techniques of Ledyard and

Palfrey (1999) and Williams (1987). Using Theorem 1 of Myerson and Satterthwaite
(1983), we solve the program

max
q
γBS(q) + (1− γ)SS(q)

st.
∫ 1

0

∫ 1

0
q(c, v) [2v − 1− 2c] dvdc ≥ 015

Consider the Lagrangian,

L = γBS(q) + (1− γ)SS(q) + λ
∫ 1

0

∫ 1

0
(2v − 1− 2c)dcdv =

∫ 1

0

∫ 1

0
q(c, v)ϕγ,λ(c, v)dcdv

where ϕγ,λ(c, v) := γ(1−v)+(1−γ)(2v−1−c)+λ(2v−1−2c). The optimal allocation
is then qγ,λ(c, v) = 1{ϕγ,λ(c, v) ≥ 0}. The problem becomes selecting λγ = λ such that
the ex ante budget constraint is satisfied and, if binding, satisfied with equality. One
may verify that if λγ = 0, qγ,λγ violates the budget constraint for all γ > 0. At γ = 0,
the unconstrained maximum is achieved by q0,0(c, v) = 1{v ≥ (1 + c)/2}.

For γ > 0, λγ > 0 is chosen to satisfy∫ 1

0

∫ 1

0
qγ,λγ (c, v)[2v − 1− 2c]dcdv = 0

Given the formula for qγ,λγ , the equation reduces to a quadratic in λγ. Selecting the

postiive root, we find λγ = 2γ−1+
√

3γ2−3γ+1
2 note that λ0 = 0 so encompasses the edge

case. We may then derive buyer and seller surpluses over the frontier in closed form.
Then,

BS(qMS
γ,λγ

) = (
√

3γ2 − 3γ + 1 + 1)3

48(γ +
√

3γ2 − 3γ + 1)(1− γ +
√

3γ2 − 3γ + 1)2

SS(qMS
γ,λγ

) = (
√

3γ2 − 3γ + 1 + 1)3

48(γ +
√

3γ2 − 3γ + 1)2(1− γ +
√

3γ2 − 3γ + 1)

so the MS-ex ante frontier is

UMS := {(UB, US) = (BS(qMS
γ,λγ

), SS(qMS
γ,λγ

)) | γ ∈ [0, 1]}
15Strictly speaking, this is the relaxed problem absent the monotonicity constraints implied by

incentive compatibility. Nonetheless, because cost and value distributions are regular (uniform), the
solution to this relaxed problem naturally satisfies these additional constraints.
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To get the left-hand side of the MS ‘teardrop’, we solve the program

W (u) = max
q
SS(q)

st.


∫ 1

0
∫ 1

0 q(c, v)[2v − 1− 2c]dvdc ≥ 0
u =

∫ 1
0
∫ 1

0 q(c, v)[1− v]dvdc

For u ∈ [0, 1/24) This has solution W (u) = V (u) =
√

6u
3 − 2u.

In Myerson-Satterthwaite, buyer and seller are symmetric in the mechanism. There-
fore, since cost and value distributions are also symmetric in the uniform case we are
considering, we can trace out the right-hand side of the MS ‘teardrop’ by mapping
out the graph (W (u), u) for u ∈ [0, 1/24), i.e., by reflecting the graph about the line
UB = US.
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