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Abstract

Many goods are allocated via resale networks, reaching their final buyer through a sequence of
exchanges. We study a model where a single good is traded by a potentially infinite number of
traders who have private valuations for the good and are connected in a random network that
determines resale possibilities. Whoever holds the good has bargaining power. We show that
large resale networks allocate efficiently in the no-discounting limit, even if resale opportunities
are locally-limited. When the network is a stationary random tree, the limiting equilibrium is
inefficient if and only if the network is a chain of monopolists.
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1 Introduction

The ideal-type of a centralized market, where all buyers and sellers meet to exchange, plays a promi-
nent role in economic theory. However, many goods and assets, including those whose value is not
subject to fluctuation, change hands several times before reaching their final buyers. Often, especially
when goods are unique and in short supply, a centralized marketplace, be it physical or virtual, is
simply inexistent. Instead, goods are exchanged locally, over-the-counter, and reach their final buyers
via resale networks. Examples range from the trading of artworks to over-the-counter (OTC) financial
markets, such as the market for bonds and complex derivatives.1

In this paper we study the dynamic trading of a single good. We assume traders have private
valuations over consuming the good, which are given once-and-for-all. The good is exchanged multi-
ple times before consumption because resale opportunities of individual traders are limited. A salient
feature of this economy is that the willingness to pay for the good does not depend on the own con-
sumption value alone, as it would be normally the case in a large centralized market, but also on the
structure of and behavior in the entire network of resale opportunities.2 Our main insight is that, for
large resale networks where owning the scarce good confers market power, a first-best allocation will
be attained in the limit as discounting vanishes, as long as bottlenecks are rare, that is everyone has,
frequently enough, a chance of finding multiple potential buyers.

Economic theory suggests at least two reasons why frictions could persist in a resale network,
even in the limit as there’s no delay-cost from exchanging the good. First, if negotiations take place
between privately informed strategic agents, the opportunity of these agents to obtain a rent from their
private information typically results in less trade than it would be optimal (see Myerson and Satterth-
waite (1983)). While it is known that large centralized markets may resolve informational problems,
there’s no such general theory for decentralized ones.3 Second, in a resale network, strategic traders
will attempt to extract a rent from restricting access to other members of the network. In small net-
works, as we outline later in the literature review, this is known to generate inefficiencies, with and
without asymmetric information.

Our theory on the efficiency of large resale networks is developed within the following model.
A seller owns a single indivisible good and is connected to a, possibly random, number of ex-ante
identical trading partners. Each of these partners is a potential buyer and has a monetary valuation
for consuming the good, which is private information. The seller has market power and selects a
mechanism to sell the good. If there is no sale, the seller consumes. If one of the buyers acquires the
good, then another identical period ensues, where this buyer is now the seller. And so on until con-

1In OTC markets, transactions are mostly bilateral, traders often take securities in their inventory, and inter-dealer
resale is frequent. For instance, exploiting a dataset of US municipal bonds transactions, Li and Schürhoff (2019) show
that more than 20% of trades involve two or more dealers and that their relationships are long-lived, but not permanent.

2For instance, suppose a trader participates in an auction for a good knowing that she might resell it to someone who
in turn can resell it to others, an so on. How much she is willing to bid depends on the own value from consuming and
her beliefs about the network structure and the values of all buyers downstream to her. Even if consumption values are
private, the presence of resale opportunities generates a common value component in the valuation.

3A number of papers demonstrate the efficiency of centralized markets, even when patronized by strategic agents, un-
der a quite permissive set of informational assumptions. For the case of private-values, Rustichini et al. (1994), Cripps and
Swinkels (2006) and Fudenberg et al. (2007) show that in one-shot double-auctions (i.e., since Chatterjee and Samuelson
(1983) the paradigm for modeling a centralized market with strategic agents) the inefficiency due to private information
quickly disappears as the number of buyers and sellers becomes large.
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sumption takes place. The number of potential buyers that each seller has is determined, identically
in every period, by the degree distribution of the resale network (i.e., the network is the realization
of a Galton-Watson random tree) and everyone only observe their local connections. We assume that
every trader has always at least one buyer and that the degree distribution has finite expectation. Since
the number of potential buyers is, for sure, infinite and the average degree is constant, the network
is large but sparse, in a formal graph-theoretic sense. All traders discount the future and maximize
expected net monetary surplus. We focus on the unique limit equilibrium of this game, as discounting
vanishes.

Assume all traders are ex-ante identical and let vH be the maximum in the support of the buyers’
distribution of values. It is easy to see that, if traders do not discount the future, then in the game above
there is an (almost surely) ex-post efficient equilibrium, where agents keep exchanging the object at
price vH and when an agent with such value is eventually found, consumption takes place.4 In light
of this, our research question can be rephrased as follows. Are equilibria with positive discounting
converging to this efficient equilibrium in the limit as agents no longer discount the future? How the
answer to this question depends on the network structure?

To illustrate our results, let’s begin by considering the simplest possible large resale network,
an infinite chain of monopolists. Each trader has a single buyer and who owns the good makes a
take-it-or-leave-it offer and consumes if this offer is refused.5 In this case we show that the unique
equilibrium with positive discounting does not converge to the efficient one described above. Even
though, when discounting vanishes, it becomes common knowledge that a buyer with value of nearly
vH exists and can be reached almost surely in a finite number of rounds, the absence of downstream
buyers competition generates a sizable inefficiency. In fact, the limit equilibrium is not much more
efficient than if we were to let just a single seller and a single buyer negotiate under complete infor-
mation. The opportunities for improving the allocation that are offered by the whole resale network,
with its unbounded number of potential buyers, are wasted.

While the above indicates that an efficient outcome won’t be attained always, our main result is
that the chain of monopolists is the only case where it won’t, under the stated assumptions. In fact, we
show that an efficient outcome attains in the presence of even a tiny probability that each seller faces at
least two buyers, rather than just one. The idea is that, as discounting disappears, each seller can now
insist on asking a price of nearly vH to every buyer, because it is common knowledge that there will be
enough opportunities to find buyers to whom it is possible to ask a price of exactly vH without risking
breakdown of trade. For this, it is sufficient that, anytime a seller finds itself with two buyers, it asks a
price of vH to one of them and otherwise sells to the second one at a price that it will be accepted for
sure. The (optimal version of this) mechanism now becomes incentive compatible for the seller even
with discounting, as even the continuation value of the lowest-value buyer approaches vH .

We study a stylized model. In Section 5 we argue that, in addition to sufficient downstream
competition, two assumptions are really necessary for efficiency: unboundedness of the network and
market power of sellers (i.e., bargaining power and ability to price discriminate). Otherwise, conver-
gence to efficiency holds even if we dispense with a number of other assumptions we make mainly

4The path of the good is not important as the continuation network departing from any node is infinite.
5Following Riley and Zeckhauser (1983)), a take-it-or-leave-it offer is an optimal mechanism here.
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for simplicity of exposition, including the network-stationarity assumption and that of symmetric
information about the network.

This paper contributes to the large literature investigating decentralized markets. One of the
central questions is whether or not, as decentralized markets become more and more “competitive”,
outcomes converge to efficient Walrasian ones. The canonical approach is to assume that a large
pool of agents is, at each point in time, randomly matched in small groups to bargain over the terms
of trade. If they fail to agree, then they experience a delay before being matched again. Seminal
contributions include Rubinstein and Wolinsky (1985, 1990) and Gale (1986, 1987); a sample of more
recent work in this tradition includes Lauermann (2012, 2013), Atakan and Ekmekci (2013), Golosov
et al. (2014). For the special case where sellers have bargaining power, as in our model, it appears
that the unambiguous conclusion is one of convergence towards Walrasian outcomes. Further work
confirmed this insight for the case of one-sided (Wolinsky (1988), De Fraja and Sákovics (2001)) and
and two-sided asymmetric information (Satterthwaite and Shneyerov (2007, 2008)).

In order to capture the salient features of resale networks, our paper departs from the dynamic
search and matching literature in the way we model a decentralized market. In our work, the market
is not two-sided, all traders can be both buyers and sellers. Moreover, there is a single good for sale,
so, rather than having many local markets in any given period, we have one. Nevertheless, we reach
analogous conclusions. On the one hand, as the cost of delaying consumption vanishes, informational
asymmetries do not represent a major source of friction. On the other hand, the allocation of bargain-
ing power and the matching protocol (i.e., the network in our case) matter. Sellers’ market power and
enough instances of local competition among buyers along the network are needed for efficiency.6

Recently, a literature has emerged that models markets as finite networks. Most of it, starting
with Kranton and Minehart (2001), focuses on bipartite buyer-seller networks. A handful of papers
consider resale networks, including Gale and Kariv (2007), Gofman (2011), Wright and Wong (2014),
Condorelli et al. (2017), Manea (2018), Kotowski and Leister (2019), Blume et al. (2009), Nava
(2015), Elliott (2015), Malamud and Rostek (2017), Babus and Kondor (2018); we refer the reader to
Condorelli and Galeotti (2016) for a survey on dynamic model of strategic intermediation. A message
coming from this line of work is that inefficiencies can persist even when the cost of delay gets small.
In particular, traders who provide monopolistic access to parts of the network may not internalize the
social value of reselling, which may lead to the good taking a less efficient path or to trade break-
down altogether. We contribute to this literature by showing that this source of inefficiency generally
disappears in large resale networks where sellers have market power.

Tangentially related is the study of resale in auctions. A strand of this literature examines how
incentives of bidders are affected by the possibility of resale, for instance see Zheng (2002), Haile
(2003), Garratt and Tröger (2006), Hafalir and Krishna (2008), Carroll and Segal (2018). Another
strand has focused on the effect of information provision following the initial sale, see Calzolari and
Pavan (2006a,b) and Dworczak (2020). Partly because they ask different questions than us, these
papers model resale as a one-shot phenomenon and therefore are not directly comparable.

6Other pioneering papers, such as Corominas-Bosch (2004), Polanski (2007) and Manea (2011) have embedded a
network structure into a two-sided matching and bargaining game. These papers do not study intermediation and remain
firmly in the tradition of the dynamic matching and bargaining literature.

4



2 Model

We consider a dynamic model where a single indivisible good may be traded for a possibly unlimited
number of periods. At the outset, the good is owned by an initial seller who is linked to a finite
number of potential buyers. In each period, including the first, the current owner of the good resells it
to one of its downstream buyers or consumes it. Following consumption, the game ends. If the good is
sold, the buyer becomes the new owner and it is matched with a randomly drawn set of new potential
buyers. All other traders exit the game and a new period starts. Trading continues until consumption.

In each period, the number of potential buyers is the realization of a random variable taking
strictly positive values in N+, with distribution π and finite expectation. The probability of a seller
facing n> 0 buyers is πn.7 All traders (i.e., the initial seller and all potential buyers) are ex-ante identi-
cal, but once they enter the game are endowed with a monetary value for consuming the good. Values
are private information and identically and independently drawn from the cumulative distribution F
supported in [0,1]. We assume that 0 and 1 are in the support.

In each period, the seller publicly commits to a selling mechanism. Without loss of generality, we
assume that before the choice of mechanism is made, everyone observes the number of downstream
buyers the seller is connected with and the value of the seller.8 A mechanism is an arbitrary game
form, which determines the (possibly random) allocation of the good and the transfers from buyers to
the seller, as a function of the history of its play. We assume all transfers are bounded by some constant
greater than one.9 Since participation is voluntary, a mechanism contains a non-participation option
for every buyer that delivers a payoff of zero. To avoid specifying the set of feasible mechanisms,
we follow Maskin and Tirole (1992) and assume that a seller cannot deviate to a mechanism that has
no continuation equilibrium.10 While not essential, we assume that the outcome of the mechanism is
observed by its participants.

All traders discount future payoffs at rate 0 < δ < 1 and maximize expected payoff, which is
the sum of discounted payments (positive or negative) and value from consumption. For instance,
suppose a trader with value v pays p in period t and receives p′ in t +1. Its payoff is δ t(δ p′− p). If,
in addition, it consumes the good, then its payoff is δ t(δv+δ p′− p).

7We assume π0 = 0. This guarantees that the network is infinite with probability one and, therefore, provides us with
a natural efficiency benchmark. We discuss relaxing this assumption in Section 5.

8The seller can learn about the number of buyers through the design of the mechanism and with risk-neutral buyers
it can’t exploit this information to his advantage (see McAfee and McMillan (1987)). The second assumption avoids the
complications of the informed principal problem. However, following Mylovanov and Tröger (2014) (see Proposition 8),
in a linear mechanism design environment with private values and monotonic payoffs, as the one we study, the information
buyers have about the seller’s value has no influence on the equilibrium outcome.

9A bound on the maximum payment eliminates implausible equilibrium bubbles, whereby traders exchange the object
forever at growing prices that allow everyone to at least break-even.

10As stated in the first paragraph of the section, we maintain that if the good is assigned to the seller, then consumption
takes place. A seller cannot draw a new set of buyers in each period. As a result, sellers always prefer to use mechanisms
that commit them to consumption whenever the good remains unsold.
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3 Equilibrium

The solution concept we adopt is weak Perfect Bayesian equilibrium. To define the extensive-form
game more formally, we may begin with a countably infinite set of players and envisage nature gen-
erating the resale network (i.e., a stationary random tree) according to the branching process defined
by π and then randomly allocating players to nodes.11

When trader i enters the game as a buyer he knows his valuation, vi, observes the mechanism
the seller has selected, the seller’s valuation, and the number of competing buyers. Trader i has no
additional information. In particular, trader i has no information about past trading. Subsequently,
when i acts as seller, his only additional information is the number of potential buyers he has and,
naturally, the outcome of the mechanism and whatever he has observed during its play. A strategy
for trader i is then defined as usual. To ease notation, we do not write down the belief system.
We stress that upon entering the game as a buyer, trader i believes that the valuations of all other
buyers are identically and independently distributed according to F . Similarly, upon acquiring the
good, the seller believes that the valuation of the buyers he has been matched with are identically and
independently drawn from F .

We start the analysis with two observations. First, upon acquiring the object, the continuation
payoff of a trader, as a seller, only depends on his valuation. Indeed, the buyers the seller is matched
with have no information about the history prior to the seller acquiring the good. Hence, their be-
havior cannot depend on such history. It follows that a seller with given value must expect the same
payoff irregardless of previous history. Second, all traders with any given value have the same ex-
pected continuation payoff following their purchase. Because buyers cannot condition their behavior
on the identity of the seller and all traders are equally likely to take up any position in the network,
their continuation payoff, computed before the number of buyers is realized, must be the same. Be-
cause payments are bounded, this unique continuation payoff of sellers has to be in [0,1]. Since this
continuation depends on the valuation of the owner, we let V : [0,1]→ [0,1] be the function mapping
valuations to continuation payoffs.

It is a corollary of the above that, at an equilibrium of our dynamic game, the mechanism se-
lected by a seller with value v and the behavior of his n buyers must form an equilibrium of an
associated static mechanism design problem. In this static game, a seller with valuation v chooses
an individually-rational mechanism to sell to n buyers with identical and independent valuations dis-
tributed according δV (vi) with vi ∼d F for i = 1, . . . ,n.

Let us denote with Rn(δV,v) the expected revenue from the seller-optimal static mechanism. If
V is measurable, then Rn(δV,v) is well defined (see e.g. Page (1998)). We next argue that in any
equilibrium of the static game a seller must obtain Rn(δV,v). As shown in Duggan (1997), for all
ε > 0 there exists a mechanism which guarantees a revenue of Rn(δV,v)− ε in all of its equilibria.
Hence, given V , no seller expect a payoff lower than Rn(δV,v). It is routine to verify that v 7→ Rn(·,v)
is continuous in v and takes values in [0,1].

We conclude from the previous arguments that, in an equilibrium of our dynamic game with

11The process first draws n1
0 ∈ {1,2, . . .} nodes with probability πn1

0
and connects them to the initial node–node 0. Then,

for each new node i, the process draws n2
i nodes and connects them to i, and so on.
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discounting δ , if V is the continuation payoff upon acquiring the good, then a seller with value v
expects payoff Rn(δV,v) when facing n bidders. Modulo V , this pins down the choice of mechanism
and bidding behavior in the equilibrium of our dynamic game. In particular, the initial seller and all
subsequent sellers offer mechanisms achieving the maximal revenue Rn(δV,v) when they are n buyers
and a seller’s valuation is v. Buyers play static equilibria of any mechanism they face, conditional on
their continuation value being given by V (v) when their valuation is v.

We are left with characterizing V . Because all traders have the same continuation payoff, if V is
an equilibrium continuation payoff of our dynamic game, then we must have

V (v) = Tδ (V )(v) := ∑
n

πnRn(δV,v). (1)

That is, in any equilibrium, the continuation payoff V must be a fixed point of the operator Tδ , which
computes the expected revenue of a seller as a function of her value before the number of buyers is
realized. Since v 7→ Tδ (V )(v) is bounded and continuous, we can confine our search to the space of
bounded and continuous functions V : [0,1]→ [0,1], a complete metric space. In Appendix A we
verify that Tδ is a contraction and, therefore, admits a unique fixed point, which we denote as Vδ .

To sum up, we have shown the following result, which asserts existence of a (seller-payoff-
unique) equilibrium. Let Gδ be the game defined in Section 2.

Proposition 1 For all δ < 1, there exists an equilibrium of Gδ . Moreover, in all equilibria, the contin-
uation payoff of each trader upon acquiring the good is Vδ , the unique fixed point of the operator Tδ .

We have argued that Vδ is continuous and 0≤Vδ (v)≤ 1 for all v. It follows from standard mech-
anism design arguments that Vδ is increasing and convex. We sketch in Figure 1 the main geometrical
properties of Vδ . Since δ is the highest-possible willingness to pay of a buyer (corresponding to the
buyer being able to obtain 1 in the next round from ownership of the good), sellers with value above
δ will consume and so Vδ (v) = v for v≥ δ .

1

10

Vδ(v)

Vδ(0)

Vδ

v
δ

Figure 1: An arbitrary resale value function
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4 Ex-post (in)efficiency of the limit equilibrium

Our main contribution is to characterize the efficiency properties of the limit equilibrium as δ → 1
and how they depend on the degree distribution π , which determines the realized resale network.
As a preliminary step, we state that a limit equilibrium exists and all limit equilibria have the same
continuation payoff function; the proof is in Appendix B.

Proposition 2 Consider any δ -indexed sequence of the constructed equilibria presented in Propo-
sition 1 with δ → 1. The limit equilibrium exists, it is an equilibrium of the limit-game G1 and
its continuation payoff is a continuous, increasing and convex function V1 = lim

δ→1
Vδ (uniformly). In

addition, any other limit equilibrium must have continuation payoff equal to V1.

We can now state our main result.

Theorem 1 A limit equilibrium is almost-surely ex-post efficient if, and only if, π1 < 1 (i.e., unless
the network is a chain of monopolists).

Asserting that a limit equilibrium is almost surely ex-post efficient is equivalent to claiming that,
with probability one, a player with value 1 consumes in equilibrium. Without discounting, only the
value of the consuming trader matters for welfare because side-payments are welfare-neutral.12 That
a value 1 trader must consume follows from the fact that, since π0 = 0, there are infinite buyers in
the network and, almost surely, there is a buyer with the highest consumption value of 1.13 In turn,
in an efficient equilibrium trading must take place until a buyer with value arbitrarily close to 1 is
found, and this requires that even lowest value buyers must be ready to purchase from highest value
sellers, to keep the good in the market. Because a seller will always set a reserve price above its own
valuation, we conclude that, for efficiency to attain, the willingness to pay of all buyers must converge
to 1. It is immediate to see that if the willingness to pay for all buyers converge to 1, then consumption
will only take place by sellers with values greater than or equal to δVδ (0)→ 1 and so the outcome is
efficient. We therefore make the following useful observation; see proof in Appendix B.

Lemma 1 The limit equilibrium is ex-post efficient if, and only if, lim
δ→1

Vδ (0) =V1(0) = 1.

Since Vδ (1) = 1 and Vδ is non-decreasing, lim
δ→1

Vδ (0) = V1(0) = 1 implies V1(v) = 1 for all

v ∈ [0,1]. With this in hand, we now develop the proof of Theorem 1, covering, in turn, the case of
π1 < 1 and the case of π1 = 1. The following proof for the π1 < 1 case delivers compelling intuition
and we recommend the reader not to skip it.

12Monetary payments are welfare neutral in the sense that the sum of ex-post payoffs of all players must be equal to
the discounted consumption value of the trader that consumes. Then, the ex-post sum of payoffs is zero if consumption
never takes place. Otherwise, it is equal to δ tv, where t is the round in which the object is consumed and v the value of the
consuming trader. Since when δ = 1 utility between traders is freely transferable through a chain of payments, it follows
that an ex-post efficient outcome must maximize the sum of ex-post payoffs.

13Denote with Mn the maximum of n i.i.d. random variable with CDF F . Note that Pr{Mn ≤ x} = Fn(x) and that
for x < 1, Fn(x) < 1. Then lim

n→∞
Fn(x) = 0. Hence, Mn converges in probability to 1. Since {Mn}n is a non-decreasing

sequence, convergence is almost surely.
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Proof of Theorem 1 (π1 < 1 case) We want to show that lim
δ→1

Vδ (0) = 1. To do so, we derive a

lower bound on Vδ (0), and show that it can be made arbitrarily close to 1 as δ increases. Consider
the equilibrium resale-value function, Vδ , and recall that it will be shared by all sellers. Observe that
a seller can always use the following mechanism: If the seller faces only one buyer, it makes a take-
it-or-leave-it offer at price δVδ (0); if it has two or more buyers, it makes a take-it-or-leave-it offer at
price δ − ε to one of them and, if it is refused, asks price δVδ (0) to another buyer, with ε > 0.

The offers at δVδ (0) are accepted with probability one. The offers at a price δ − ε are accepted
by buyers with consumption values in {v : δVδ (v)≥ δ − ε}. Therefore, such offers are accepted by a
positive measure of valuations in [V−1

δ
(δ−ε

δ
),1], where V−1

δ
is the generalized inverse of Vδ .14

Denote with γ = (1−π1)
[
1−F

(
V−1

δ
(δ−ε

δ
)
)]

the probability that the seller faces at least two
buyers and that an offer at δ − ε is accepted when made. Observe that γ is strictly positive for any
ε > 0, π1 < 1 and δ ∈ (0,1). The revenue generated by this mechanism is

(δ − ε)γ +(1− γ)δVδ (0).

Since all sellers can make use of this mechanism, this revenue is a lower bound of Vδ (0), i.e.,

Vδ (0)≥ (δ − ε)γ +(1− γ)δVδ (0) ⇐⇒ Vδ (0)≥
γ

1−δ (1− γ)
(δ − ε).

Taking limits and substituting for γ , we obtain

lim
δ→1

Vδ (0)≥ lim
δ→1

γ

1−δ (1− γ)
(δ − ε) =

(1−π1)

[
1− lim

δ→1
F
(

V−1
δ

(δ−ε

δ
)
)]

(1−π1)

[
1− lim

δ→1
F
(

V−1
δ

(δ−ε

δ
)
)](1− ε) = 1− ε,

because lim
δ→1

F
(

V−1
δ

(δ−ε

δ
)
)

exists and is strictly less than 1, since 1 is in the support of F and ε > 0.

Since ε is arbitrary, it follows that V1(0) = lim
δ→1

Vδ (0) = 1 if π1 < 1. �

The intuition that emerges from the proof is the following. Whenever there are at least two
downstream buyers, a price of δ · 1 can be demanded to one of the buyers and, upon rejection, the
good can be offered at a price δVδ (0) which is accepted by all buyers. With this (potentially sub-
optimal) mechanism, the object flows through the network until it reaches a buyer with a value above
δ , who then consumes and to whom at most an information rent of 1− δ is offered. As discounting
vanishes, it is just sufficient that at least two buyers appear infinitely often along each path of the
network, that is π1 < 1, for these information rents to go to zero and so all resale values approach 1.15

This provides the right incentive to each seller with a valuation lower than 1 to keep the object flowing
in the network, which is what is needed to obtain ex-post efficiency when δ → 1.16

14That is, V−1
δ

(v) = inf{v′ ∈ [0,1] : δVδ (v′)≥ v}
15Note that the condition that π1 < 1 does not mean that each seller will face two buyers in every period.
16An ex-post efficient equilibrium always exists in the G1 game, where δ = 1. For example, G1 admits an equilibrium

where sellers with value 1 consume, while all other sellers set a second-price auction with reserve price of 1 and sell with
probability one. This equilibrium is efficient and every trader, except for the initial seller, breaks-even. Since the limit
equilibrium must be an equilibrium of G1 a corollary of the first part of Theorem 1 is that the limit equilibrium when
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We now turn to the second part of Theorem 1, where it is assumed that the resale network is a
chain of monopolists. In this case a seller either offers the object at a price that even the lowest value
buyer is willing to accept (δVδ (0)) or will ask a higher price, thereby excluding some buyers from
purchasing. Efficiency requires all sellers follow the former strategy. This implies that the resale value
of a lowest value seller, Vδ (0), must be equal to δVδ (0), which is only possible if Vδ (0) = 0. This, of
course, violates incentive compatibility for sellers, who can make positive profit by asking a positive
price below δ . Rather than formalizing this argument, the proof that we provide next develops an
upper-bound, B(v), to V1(v) and shows that this upper bound is strictly lower than 1 for type v = 0,
i.e., B(0)< 1. The derivation allows to determine a lower bound to the total welfare loss in the chain
of monopolists.

Proof of Theorem 1 (π1 = 1 case). Define the function B : [0,1]→ [0,1] by

B(v) = 1−
∫ 1

v
F(r)dr.

We first prove that B is an upper bound to V1. Note that B(v) = 1−
∫ 1

v F(r)dr ≥ 1−
∫ 1

v 1dr = v for
all v. Moreover, B is convex with derivative F(v) at v for all v. Therefore, for all (v,r),

B(v) ≥ B(r)+F(r)(v− r)≥ B(r)+F(r)(v− r)+F(r)(r−B(r))︸ ︷︷ ︸
≤0

= (1−F(r))B(r)+F(r)v.

Hence,
B(v)≥ max

r∈[0,1]
(1−F(r))B(r)+F(r)v = T1(B)(v).

It follows that

B≥ T1(B)≥ Tδ (B)≥ Tδ (Tδ (B))≥ ·· · ≥ lim
n→∞

T n
δ
(B) =Vδ ,

for all δ , where we use the fact that Tδ is increasing and Tδ ≥ Tδ ′ for all 1 ≥ δ ≥ δ ′. Consequently,
we have lim

δ→1
Vδ =V1 ≤ B.

Second, it is easy to see that B(0) =E[v]< 1 and therefore, in light of Lemma 1, this implies that
ex-post efficiency will not attain in the limit, i.e., a positive mass of sellers with value greater than
V1(0), with V1(0)≤ B(0)< 1, consume with strictly positive probability in the limit equilibrium. �

We now use the function B to construct a lower bound on the total welfare loss arising in equilib-
rium with a chain of monopolists. To do so, observe that a buyer with valuation v will never buy at a
price higher than B(v), which is an upper bound to the resale value, while a seller will never sell the
good at a price below the own value. This implies that a seller with value u will consume whenever
the buyer has value v such that u > B(v). The probability that consumption happens when the seller
has value u is, therefore, at least limx↑u F(B−1(x)). Compared to the first best, the welfare loss in the
limit equilibrium when a seller with value u consumes is 1−u. Averaging over the possible valuations

π1 < 1 indeed converges to this efficient equilibrium of G1.
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of the seller, we obtain a lower bound on the equilibrium welfare loss which is equal to

∫ 1

0
(1− y) lim

x↑y
F(B−1(x))dF(y).

The lower bound above is conservative. In practice, a seller always has an incentive to raise the
price strictly above its value and a buyer’s resale value will be above the lower bound B.

To appreciate the extent of the inefficiency let’s focus on the the welfare of the first seller, whose
payoff is equal to the total surplus when π1 < 1. Assume z∼d F , and let’s rewrite the bound as

B(v) = 1−
∫ 1

v
F(x)dx = 1−

∫ 1

v

∫ x

0
dF(z) dx = (1−F(v))E [z | z > v]+F(v)v,

where the second equality follows by exchanging the order of integration. This rewriting indicates
that the maximum (undiscounted) resale value of the initial seller with value v cannot exceed the
expected first-best surplus from a bilateral trade between the initial seller and the next buyer in the
chain. Hence, despite there are infinitely many resale opportunities along the chain of monopolists
starting from the initial seller, only the value of selling to the direct downstream buyer is internalized
by the initial seller. As we illustrate next with our examples, the fact that the initial seller’s payoff is
limited, does not imply that in a chain of monopolists the outcome remains close to efficient but the
surplus is distributed to buyers along the chain. Instead, the seller extracts most of the surplus and
inefficiencies are sizable.

Example (Two-value Distribution) Let the two possible valuations be {vL,vH} with 0 < vL <

vH = 1 and assume that the probability of high value 1 is 0 < µ < 1. In this case, buyers have two
valuations, Vδ (vL) and Vδ (1). Since, the high-value seller always consumes, we have Vδ (1) = 1.

The binary-valuation case is interesting in a number of ways. First, a closed-form solution for
Vδ (vL) is available. That is

Vδ (vL) =

δ (1−∑n πn(1−µ)n)+ vL ∑n πn(1−µ)n if τ∗ < 0
δ (1−∑n πn(1−µ)n−1)
1−δ ∑n πn(1−µ)n−1 if τ∗ ≥ 0

where
τ
∗ = δ

δ −µ−δ ∑n πn(1−µ)n

1−µ−δ ∑n πn(1−µ)n − vL.

Observe that if τ∗ < 0 then the seller will use a reserve price equal to 1. Otherwise, the reserve price
is δVδ (vL) and the outcome is inefficient. Consistently with our main result it can be seen that τ∗ < 0
if π1 = 1 while lim

δ→1
τ∗ = 1− vL > 0 if and only if π1 < 1.

Second, the two-type case clearly highlights the logic behind the inefficiency result in the chain of
monopolists. Facing a single buyer, a seller with value vL either asks price δ , thus obtaining a payoff
of µδ +(1− µ)vL, or asks δVδ (vL), selling for sure and obtaining δVδ (vL). For the equilibrium to
be ex-post efficient, sellers must prefer this second option. However, the fixed-point equation (1)
implies in this case that Vδ (vL) = δVδ (vL), which is only satisfied if Vδ (vL) = 0. But this is clearly
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impossible in equilibrium, as µδ +(1−µ)vL > 0. Hence, we conclude, the initial seller will ask price
1 in equilibrium and trade will never proceed for more than two rounds.

Third, the bound B is tight. In fact B(vL) = µ +(1− µ)vL. All traders beyond the initial seller
make no surplus. Moreover, only the initial seller makes a positive payoff and the welfare loss is equal
to (1−vL)(1−µ). As one would expect, the loss increases when high-valuation traders become more
difficult to find.

Example (Uniform Distribution) Suppose valuations are uniformly distributed. We are unable to
solve for the limit resale value analytically, as it involves solving a system of two differential equations
(i.e. the equation that determines the optimal price as a function of the resale value and equation (1),
which depends on the optimal price).

Nonetheless, we were able to obtain a solution computationally. Figure 2 reports both the upper
bound of the resale value of a buyer with value v, which in this case is B(v) = v2+1

2 and the numerical
computation of equilibrium. In the figure, the monopoly line indicates the seller’s revenue when it
sells under asymmetric information, to a single buyer who has no resale possibilities, and the 45-
degree line indicates the autarchy outcome, where the seller consumes without selling.

Seller’s value

Upper bound B

Monopoly

Equilibrium V1

Autarchy

Figure 2: V1 in the chain of monopolies (π1 = 1) with the uniform dis-
tribution
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5 Robustness

We conclude by investigating the limits and robustness of the efficiency result presented in Theorem 1.

5.1 Bargaining power and mechanism design

In our model, sellers choose a selling mechanism within the set of all feasible mechanisms. We argue
that two conditions are necessary to the efficiency result in the π1 < 1 case: (a) sellers have all the
bargaining power, in the sense that they always choose the selling mechanism, and (b) sellers can
price-discriminate across buyers.

To see why (a) is necessary, suppose that, with some probability, one of the buyers is randomly
chosen to propose a mechanism to the seller, while with the remaining probability the seller makes
the offer. Otherwise, the model remains the same and consumption by the owner of the good follows
from a refused offer. Then, assuming the value of the seller is not known to the buyer, trade will be
generically inefficient. This is an immediate consequence of the standard result on the inefficiency of
monopoly pricing.

To see why (b) is necessary, contrasts the case in which sellers can offer different prices to
different buyers with the case in which they can only post a uniform price. Buyers must decide
whether to buy or not at the posted price and the object is randomly allocated among those willing
to buy. In contrast with Theorem 1, the following proposition shows that the outcome is ex-post
inefficient regardless of the resale network; see Appendix B for the proof.

Proposition 3 Suppose the only mechanism available to sellers is to post a single price. Consider a
sequence of equilibria of this modified game as δ → 1. The outcome of the limit equilibrium is not
ex-post efficient.

This result has a simple intuition. Consider the situation in which the resale network is so that
every seller has n buyers. Because a seller can only post a uniform price, the probability that a buyer
buys the object depends on the distribution of the maximum valuation of the n buyers. Hence, this
situation is isomorphic to one where there is a chain of monopolists but the distribution of the value
of the subsequent monopolist is now given by the distribution of maximum of n values drawn from F .

Finally, we argue that (a) and (b) are, in a sense, jointly sufficient for efficiency to attain when
π1 < 1. That is, the assumption that sellers can select any mechanism is not necessary for efficiency,
which can be attained as long as sellers have bargaining power and, in addition, can charge different
prices to different agents. Indeed, as we demonstrated in the first part of the proof of Theorem 1
efficiency is attained in the limit even if sellers are restricted to a sequence of bilateral negotiations in
their local network, via, possibly discriminatory, take-it-or-leave-it offers.

13



5.2 Finite Networks.

We have assumed that π0 = 0. When π0 > 0, starting from any node in the network, the continuation
network of resale will be finite with some positive probability.17 This has an important consequence.
That is, if we take any two buyers connected to the initial seller, say A and B, there will be a positive
probability that the highest value among the traders who can be reached via buyer A will differ from
the highest-value among the traders who can be reached via buyer B. However, since buyers have
no information about future resale opportunities, there is no guarantee that in equilibrium the good
will take the path where the highest-value trader is located. Since equilibrium will sometimes result
in consumption by an agent who has not the highest-value in the network of resale, we conclude that
when π0 > 0, the equilibrium will not be ex-post efficient.

Ex-post efficiency becomes an excessively demanding benchmark when the network can be fi-
nite. With that in mind, we confirm next that the efficiency result of Theorem 1 still obtains as the
probability that the network becomes finite vanishes, i.e., π0 → 0. To do so, we consider games
Gδ (π) with resale network π that satisfies π0 > 0 and π0 +π1 < 1. We first take a sequence of games
where δ goes to 1 and we denote by G1(π) the limiting game. Then we take a sequence of games,
{G1(π), ...,G1(π

k)...}, that starts from G1(π) and, along the sequence, we decrease π0 in a way that
limk→∞ πk = π̂ has the following properties: π̂0 = 0 and ∑l≥1 π̂l−πl = π0. That is, along the sequence
we shift mass from π0 to others realization of resale opportunities (see Appendix B for proof).

Proposition 4 Suppose that π0 > 0 and π0 + π1 < 1. The equilibrium outcome of lim
k→∞

G1(π
k) is

almost surely ex-post efficient.

5.3 Asymmetric information about the resale network.

In our model traders are symmetrically informed about the resale network. In a way, we model an
extreme scenario, where everyone knows very little about resale opportunities that will be available
to themselves and to others. Instead, suppose each buyer is informed, before buying, of the number
of its own downstream buyers, but all other traders treat this as random draw from π . In this case,
at the time the selling mechanism is selected and played, there is asymmetric information both about
the consumption value and about resale opportunities.

The equilibrium will exhibit differentiated resale value functions {V 1
δ
,V 2

δ
, . . .}, one for each pos-

sible realization of the number of downstream buyers of the given upstream seller. An analogous
existence result can be established. Sellers will post mechanisms that maximize profit considering
that now the willingness to pay of a buyer is V n

δ
(v), with n ∼d π and v ∼d F . Moreover, efficiency

still attains if and only if V n
δ
(0)→ 1 for all n.

We first argue that as long as π1 + π0 = 0, then the limit equilibrium will be ex-post efficient.
In fact, if all traders have at least two downstream connections we use a simple adaptation of the
argument we presented in the proof of the first part of Theorem 1. In particular, consider a seller with
value equal to zero and two buyers. The seller proposes a price of δ − ε to one buyer and in case of

17This is equivalent to asserting that the extinction probability in the Galton-Watson process defined by π is positive,
which is true when π0 > 0.
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rejection offers the good to the other buyer at a price of δV 2
δ
(0). Note that V 2

δ
(0) is the lowest resale

value because V n
δ
(v) is going to be increasing in v and n. Hence, the offer δV 2

δ
(0) is accepted surely

by all buyers. We then have that

V 2
δ
(0)≥ (δ − ε)γ̂ +(1− γ̂)δV 2

δ
(0)

where γ̂ = 1−F(V 2,−1
δ

(
δ−ε

δ

)
)]. This implies that

lim
δ→1

V 2
δ
(0) ≥ lim

δ→1

γ̂

1−δ (1− γ̂)
(δ − ε) = 1− ε.

As ε is arbitrary and as V n
δ
(v) are increasing in v and in n, we have that all resale values converge to

1, which implies ex-post efficiency.

However, this argument fails when π1 ∈ (0,1), for reasons analogous to those that prevents at-
tainment of an efficient outcome in the case of the chain of monopolists in the benchmark model. To
see this, consider a seller with valuation equal to zero and with only one buyer. For the outcome to
be efficient, the seller must offer a price that a buyer always accept. This is equal to the lowest resale
value across all buyers, δV 1

δ
(0). But this implies that the resale of the lowest value seller with one

buyer V 1
δ
(0) must be equal to δV 1

δ
(0). This is only possible if V 1

δ
(0) = 0. Again, for reasons already

discussed, this continuation value is not compatible with equilibrium.

5.4 Non-stationary degree distribution.

We assume that the resale network is stationary, i.e., the degree distribution determining the number
of buyers is the same in every period. However, one could envisage a different stochastic process
{nt ∈N+, t = 0,1, . . .}, where nt is the random variable representing the number of buyers in period t.
Then, the question arises about whether it is essential that every seller has some probability of having
at least two buyers, or not. We argue, relying on the proof of Theorem 1, that efficiency would be
attained quite generally even in this environment, as long as each seller expects an infinite number of
future instances in which the number of available buyers is at least two.

To fix ideas, imagine a case where in odd periods sellers have just a single buyer, while in even
periods they face at least two buyers with probability (1−π1)> 0. This model intertwines a chain of
monopolists with the case with multiple buyers. Then, consider sellers employing the same sequential
mechanism we used in the proof of Theorem 1. As we show next, we are able to obtain the same
conclusion we obtain in Theorem 1 for the π1 < 1 case, that is the outcome is efficient.

Let V o
δ

the continuation of sellers in odd period and V e
δ

the continuation of sellers in even ones.
We have

V e
δ

= (δ − ε)γ +(1− γ)δV o
δ
(0);

V o
δ

= δV e
δ
(0).
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Substituting the bottom equation into the top one we have

V e
δ
= (δ − ε)γ +(1− γ)δ 2V e

δ
(0).

Solving for V e
δ
(0) and recalling sellers are not using an optimal mechanism we obtain

Vδ (0)≥
γ

1−δ 2(1− γ)
(δ − ε),

which again converges to 1− ε as δ → 1. As it can be easily seen, the argument above does not rely
on there being a positive probability of competition every two period. In fact, it is sufficient that
competition is present with some probability every k periods, for some fixed finite k.
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Appendix A: Proof that Tδ is a contraction

Throughout, we abuse notation and do not distinguish random variables and their realizations. It shall
not create any confusion.

Recall that Rn(δV,v) is the optimal revenue a seller with (consumption) value v obtains when he
faces n buyers. Buyer i value the good at δV (vi) when his consumption value is vi. Consumption
values are independently and identically distributed with distribution F .

Recall that the mapping Tδ is given by:

Tδ (V )(v) := ∑
n

πnRn(δV,v),

for all functions V : [0,1]→ [0,1] and v. Let C V be the space of bounded, continuous and convex
functions from [0,1] to [0,1]. Note C V is a closed subspace of the space of bounded and continuous
functions from [0,1] to [0,1]. Since the space of bounded and continuous functions from [0,1] to [0,1]
is a complete metric space (equipped with the sup-norm), so is C V .

We now show that the mapping Tδ : C V → C V is a contraction.

We first derive important properties of Rn(δV,v). From the revelation principle, we can restrict
out attention to direct mechanisms. Let (x, p) be a direct mechanism. The mechanism is incentive
compatible if:

Ui(vi) := E[xi(vi,v−i)δV (vi)− pi(vi,v−i)|vi]≥ E[xi(v′i,v−i)δV (vi)− pi(v′i,v−i)|vi],

for all v′i, for all vi, for all i. The mechanism is individual rational if

E[xi(vi,v−i)δV (vi)− pi(vi,v−i)|vi]≥ 0,

for all vi, for all i. The maximal expected revenue is therefore:

Rn(δV,v) = sup
(x,t): IR and IC

E

[(
1−

n

∑
i=1

xi(vi,v−i)

)
v+

n

∑
i=1

pi(vi,v−i)

]
,

when the seller faces n buyers and v is the seller’s consumption value.

Note that v 7→ Rn(δV,v) is continuous (Berge’s maximum theorem), convex (as the supremum of
convex functions), bounded (since transfers are bounded) and increasing.

In the sequel, we write Xi(vi) (resp., Pi(vi)) for E [xi(vi,v−i)|vi] (resp., E [pi(vi,v−i)|vi]). From the
convexity of V , incentive compatibility and positivity of Xi, we have that

δXi(v′i)V
′(v′i)(vi− v′i) ≤ δXi(v′i)

[
V (vi)−V (v′i)

]
≤ Ui(vi)−Ui(v′i)

≤ δXi(vi)
[
V (vi)−V (v′i)

]
≤ δXi(vi)V ′(vi)(vi− v′i),

for all (vi,v′i), where V ′ denotes the left-derivative of V .
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Two observations follow immediately. First, if V (v′i) > V (vi), then Xi(v′i) ≥ Xi(vi). Second, if
V (v′i) =V (vi), then Ui(vi) =Ui(v′i).

We now argue that at the optimum, we can assume without loss of generality that Xi(vi) = Xi(v′i)
if V (v′i) =V (vi) . It follows that Xi is increasing in vi at an optimum. So, suppose that V (v′i) =V (vi)

and assume without loss of generality that

(δV (vi)− v)Xi(vi)−Ui(vi)>
(
δV (v′i)− v

)
Xi(v′i)−Ui(v′i).

We consider two distinct cases. First, assume that F(v′i)−F(v′i−) = 0, where F(v′i−) is the left-
limit. We can modify the mechanism without affecting the revenue by requiring that x j(v′i,v−i) =

x j(vi,v−i) and p j(v′i,v−i) = p j(vi,v−i) for all v−i. By construction, when buyer i reports v′i, his ex-
pected payoff is Ui(vi) =Ui(v′i), so that we do not affect his incentive to be truthful. Similarly, it does
not affect the incentive of others and the revenue as we modify the mechanism on a set of measure
zero. Second, assume that F(v′i)−F(v′i−)> 0. Then, we have a contradiction with optimality noting
that the expected revenue is:

v+E

[
n

∑
j=1

((
δV (v j)− v

)
X j(v j)−U j(v j)

)]
.

It is therefore without loss of optimality to require that

(δV (vi)− v)Xi(vi)−Ui(vi) =
(
δV (v′i)− v

)
Xi(v′i)−Ui(v′i),

i.e., Xi(vi) = Xi(v′i) for all (vi,v′i) such that V (vi) =V (v′i).

We are now ready to state and prove two important lemmas.

Lemma 2 If W ≥V , then Rn(δW,v)≥ Rn(δV,v) for all n, for all v.

Proof of Lemma 2 Since Xi is increasing, it is Riemann integrable. Similarly, since V is convex,
V ′ is increasing and is, therefore, Riemann integrable. Thus, XiV ′ is Riemann integrable. From the
above, it follows that

Ui(vi) =Ui(0)+δ

∫ vi

0
Xi(s)V ′(s)ds.
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As usual, at the optimum, Ui(0) = 0. Therefore,

Rn(δV,v)−Rn(δW,v) =

max
(Xi):Xi increasing

E

[
n

∑
i=1

(
(δV (vi)− v)Xi(vi))−δ

∫ vi

0
Xi(s)V ′(s)ds

)]
(2)

− max
(Xi):Xi increasing

E

[
n

∑
i=1

(
(δW (vi)− v)Xi(vi)−δ

∫ vi

0
Xi(s)W ′(s)ds

)]

≤ max
(Xi):Xi increasing

E

[
n

∑
i=1

(
δ (V (vi)−W (vi))Xi(vi)−δ

∫ vi

0
Xi(s)(V ′(s)−W ′(s))ds

)]
(3)

= max
(Xi):Xi increasing

E

[
n

∑
i=1

(
δ (V (0)−W (0))Xi(0)+δ

∫ vi

0
X ′i (s)(V (s)−W (s))ds

)]
(4)

≤ 0, (5)

where (1) follows from the definition of the revenue and the expression for Ui(vi), (2) follows from
the property that the difference of the maximum of two functions is smaller than the maximum of the
difference of the functions, (3) follows from integration by parts and (4) from W ≥ V and X ′i (s) ≥ 0
for all s, for all i since Xi is increasing for all i. �

Lemma 3 For all c≥ 0, Rn(δ (V + c),v)≤ Rn(δV,v)+δc for all n, for all v.

Proof of Lemma 3 Let (x, p) be an optimal mechanism when the value function is V +c. Consider
the new mechanism (x, p′), where

p′i(vi,v−i) = pi(vi,v−i)−δxi(vi,v−i)c

for all (vi,v−i), for all i. It is immediate to check that this mechanism is incentive compatible and
individually rational when the value function is V . Therefore,

Rn(δV,v) ≥ E

[(
1−

n

∑
i=1

xi(vi,v−i)

)
v+

n

∑
i=1

p′i(vi,v−i)

]

= E

[(
1−

n

∑
i=1

xi(vi,v−i)

)
v+

n

∑
i=1

pi(vi,v−i)−δxi(vi,v−i)c

]

≥ E

[(
1−

n

∑
i=1

xi(vi,v−i)

)
v+

n

∑
i=1

pi(vi,v−i)

]
−δc

= Rn(δV + c)−δc,

the desired result. �

We conclude that the mapping Tδ is a contraction by applying Blackwell’s theorem. From Lemma
2, we have that

Tδ (V )(v) = ∑
n

πnRn(δV,v)≤∑
n

πnRn(δW,v) = Tδ (W )(v)
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for all v, whenever V ≤W . From Lemma 3, we have that

Tδ (V + c)(v) = ∑
n

πnRn(δ (V + c),v)≤∑
n

πnRn(δV,v)+δc = Tδ (V )(v)+δc,

for all v.

Appendix B: Remaining proofs

Proof of Lemma 1 Suppose V1(0) < 1. Then, consider an open interval sellers types, with val-
ues v ∈ (V1(0),1). They will never sell with positive probability the object the open set of buyers
in (V1(0),V1(0)+ ε) for some ε > 0, where this set exists because V1 is continuous. That the equi-
librium is efficient when V1(0) = 1 follows because V1(x) = 1 for all x ∈ [0,1] and the sum of all
traders’expected payoffs, which cannot be lower or exceed V1(0) = 1, can only be equal to 1 if a
value 1 trader consumes almost surely. �

Proof of Proposition 2 For each v ∈ [0,1], the map δ 7→ Vδ (v) is increasing. To see this, observe
that Tδ is monotonic, i.e., Tδ (V )≥ Tδ (V ′) if V ≥V ′, and Tδ (V )≥ Tδ ′(V ) if δ ≥ δ ′. Therefore,

Vδ ′ = Tδ ′(Vδ ′)≤ Tδ (Vδ ′)≤ Tδ (Tδ (Vδ ′))≤ ·· · ≤ lim
k→+∞

T k
δ
(Vδ ′) =Vδ .

Consequently, the sequence (Vδ (v))δ is an increasing sequence in δ , which takes values in the com-
pact set [0,1]. Hence, the pointwise lim

δ→1
(Vδ (v))δ exists. Moreover, since Vδ is continuous and the

sequence is increasing, convergence is uniform by Dini’s Theorem. It follows that V1 is continuous,
increasing and convex. Since Vδ is convex, it is also follows that the left-derivative V ′

δ
converges

uniformly to the left-derivative of V ′1.

Recall that the optimal revenue Rn(δVδ ,v) is given by:

max
(Xi):Xi increasing

E

[
n

∑
i=1

(
(δVδ (vi)− v)Xi(vi))−δ

∫ vi

0
Xi(s)V ′δ (s)ds

)]
.

From the uniform convergence of Vδ and V ′
δ

, we have that

lim
δ→1

max
(Xi):Xi increasing

E

[
n

∑
i=1

(
(δVδ (vi)− v)Xi(vi))−δ

∫ vi

0
Xi(s)V ′δ (s)ds

)]
=

max
(Xi):Xi increasing

E

[
n

∑
i=1

(
(δV1(vi)− v)Xi(vi))−δ

∫ vi

0
Xi(s)V ′1(s)ds

)]
.

The space of increasing functions Xi : [0,1]→ [0,1] is closed. To see this, we prove that the
complementary set is open. Let f : [0,1]→ [0,1] be a non-increasing function, that is, there exist
x > y such that f (x)< f (y). Consider the set O := {g : [0,1]→ [0,1] : g(x)< ( f (x)+ f (y))/2,g(y)>
( f (x)+ f (y))/2}. By construction, f ∈ O . Moreover, all functions in O are non-increasing. Thus,
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we can find an open set of non-increasing functions g around f for every non-increasing f , hence the
space of non-increasing functions is closed.

Since the space of increasing functions Xi is a subset of [0,1][0,1], a compact set by Tychonoff
theorem, the space of increasing functions Xi : [0,1]→ [0,1] is compact. Thus, we can extract con-
verging sub-sequences (Xi,δ )δ . In particular, if X∗i,δ maximizes Rn(δVδ ,v) for all δ , we can extract a
converging sub-sequences.

From the extraction of such sub-sequences, it immediately follows that we can construct a se-
quence of equilibria of Gδ converging to an equilibrium in G1. As explained in the main text, the
equilibria of Gδ we consider consists in sellers offering optimal direct revelation mechanisms and
buyers reporting truthfully their valuations. (Off path, buyers play an equilibrium of the static game
induced by the mechanism selected by the seller, when the continuation values are given by Vδ . An
equilibrium exists by assumption.) The rest of the statements follow from uniqueness of the fixed
point Vδ for each δ < 0. �

Proof of Proposition 3 Let Fn be the distribution of the maximum valuation of n draws. Let
Bn(v) = 1−

∫ 1
v Fn(r)dr for every n, and let B(v) = ∑n πnBn(v). Note that Bn(v) = 1−

∫ 1
v Fn(r)dr ≥

1−
∫ 1

v 1dr = v for all v and for all n. We have that for all (v,r,n),

Bn(v) ≥ Bn(r)+Fn(r)(v− r)

≥ Bn(r)+Fn(r)(v− r)+Fn(r)(r−Bn(r))︸ ︷︷ ︸
≤0

= (1−Fn(r))Bn(r)+Fn(r)v.

Hence,
Bn(v)≥ max

r∈[0,1]
(1−Fn(r))Bn(r)+Fn(r)v = ERn(δVδ ,δ ),

where ERn(δVδ ,δ ) is the expected revenue of a seller posting a uniform price to n buyers. It follows
that

B(v) = ∑
n

πnBn(v)≥∑
n

πnERn(δVδ ,δ ) := Tδ (Vδ )(v).

Adapting the proof from Appendix A to the case where sellers can only use a posted uniform price,
we obtain that Tδ , defined by Tδ (V )(v) := ∑n πnERn(δV,v), is a contraction on the complete metric
space of bounded, continuous and convex functions C V . Hence,

B≥ T1(B)≥ Tδ (B)≥ Tδ (Tδ (B))≥ ·· · ≥ lim
`→∞

T `
δ
(B) =Vδ ,

for all δ . Consequently, we have that lim
δ→1

Vδ =V1 ≤ B. This leads to the following final inequalities:

V1(0)≤ B(0) = ∑
n

πnBn(0) = ∑
n

πnE[vn:n]< 1,

where E[vn:n] is the expected value of the maximum of n draws from F , which implies that a strictly
positive mass of traders with value strictly less than 1 consumes in equilibrium. �
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Proof of Proposition 4 Suppose we start from the case where π0+π1 = 1 Consider the equilibrium
resale-value function, Vδ ,π0 , and recall that it will be shared by all sellers. A seller can always make
use of the following mechanism, for some fixed small ε > 0: If there is only one buyer, make a take-it-
or-leave-it offer at price δVδ ,π0(0), if there are more than two buyers, make a take-it-or-leave-it offer
at price δ − ε to one of them, and if it is refused, then ask price δVδ ,π0(0) to another, and if there is
no buyer the seller consumes.

On the one hand, offers at δVδ ,π0(0) are accepted with probability one. On the other hand, offers
at price δ − ε are accepted by buyers with consumption values in {v : δVδ ,π0(v)≥ δ − ε}. Therefore
such offers are accepted by a positive measure of valuations in [V−1

δ ,π0
(δ−ε

δ
),1], where V−1

δ ,π0
(x) is the

generalized inverse of V (i.e., V−1
δ ,π0

(v) = inf{v′ ∈ [0,1] : δVδ ,π0(v
′)≥ v}).

If a seller with valuation v = 0 uses this mechanism, she will generate a revenue of

π1δVδ ,π0(0)+(1−π1−π0)

[
(δ − ε)

(
1−F

(
V−1

δ ,π0

(
δ − ε

δ

)))
+δVδ ,π0(0)F

(
V−1

δ ,π0

(
δ − ε

δ

))]
Since the seller is using a potentially suboptimal mechanism is follows that Vδ ,π0(0)≥

π1δVδ ,π0(0)+(1−π1−π0)

[
(δ − ε)

(
1−F

(
V−1

δ ,π0

(
δ − ε

δ

)))
+δVδ ,π0(0)F

(
V−1

δ ,π0

(
δ − ε

δ

))]
which implies

Vδ ,π0(0)≥
(1−π1−π0)

(
1−F

(
V−1

δ ,π0

(
δ−ε

δ

)))
1−δ

[
π1 +(1−π0−π1)F

(
V−1

δ ,π0

(
δ−ε

δ

))](δ − ε).

Taking limits on both sides with respect to δ we obtain

lim
δ→1

Vδ ,π0(0) ≥ lim
δ→1

(1−π1−π0)
(

1−F
(

V−1
δ ,π0

(
δ−ε

δ

)))
1−δ

[
π1 +(1−π0−π1)F

(
V−1

δ ,π0

(
δ−ε

δ

))] × (δ − ε)

=
(1−π1−π0)

(
1− limδ→1 F

(
V−1

δ ,π0

(
δ−ε

δ

)))
1−
[
π1 +(1−π0−π1) limδ→1 F

(
V−1

δ ,π0

(
δ−ε

δ

))] × (1− ε)

=
(1−π1−π0)

(
1−F

(
V−1

1,π0
(1− ε)

))
1−
[
π1 +(1−π0−π1)F

(
V−1

1,π0
(1− ε)

)] × (1− ε)

=
(1−π1)

(
1−F

(
V−1

1,π0
(1− ε)

))
+π0F

(
V−1

1,π0
(1− ε)

)
−π0

(1−π1)
(

1−F
(

V−1
1,π0

(1− ε)
))

+π0F
(

V−1
1,π0

(1− ε)
) × (1− ε)

=

1− π0

(1−π1)
(

1−F
(

V−1
1,π0

(1− ε)
))

+π0F
(

V−1
1,π0

(1− ε)
)
(1− ε)

where we have used the fact that limδ→1 F
(

V−1
δ ,π0

(δ−ε

δ
)
)

exists and is in (0,1), since 1 is in the support
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of F and ε > 0.

Finally, taking the limit with respect to π0→ 0 we obtain that

lim
π0→0

lim
δ→1

Vδ ,π0(0)≥ lim
π0→0

1− π0

(1−π1)
(

1−F
(

V−1
1,π0

(1− ε)
))

+π0F
(

V−1
1,π0

(1− ε)
)
(1− ε) = 1− ε

where the equality follows by noticing that limπ0→0 F
(

V−1
1,π0

(1− ε)
)

exists and is in (0,1), since 1 is
in the support of F and ε > 0, and that, by assumption, since π0 +π1 < 1, in the limit game in which
π0→ 0 we still have that π1 < 1.

The fact that limπ0→0 limδ→1Vδ ,π0(0) ≥ 1− ε and that ε is arbitrary concludes the proof that
limπ0→0 limδ→1Vδ ,π0(0) = 1 in the equilibrium outcome of the limiting game where traders are per-
fectly patients and the probability that the network is finite vanishes. �
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